


Energy Partnership Program between Vietnam and Denmark (DEPP3)

# Demonstration audit PVCFC Fertilizer (Ca Mau)

xxx, 2025

Report: Demonstration audit PVCFC Fertilizer (Ca Mau)

Date: February xxx, 2025

Project no: DEPP3

Version:

Prepared by: ECCBK

Prepared for: DEA, EESD, PVCFC

From By Do Manh Hung, ECCBK

QA by: Peter Maagøe Petersen, Viegand Maagøe

Approved by: Peter Maagøe Petersen, Viegand Maagøe

BACH KHOA ENERGY CONSERVATION JOINT STOCK COMPANY

Head office 27, lane 262B, Nguyen Trai, Thanh Xuan District, Hanoi, Vietnam

T (84.4) 3623.1704 eccbachkhoa@gmail.com www.eccbachkhoa.vn

# Content

| Section | ns in PVCFC Energy Audit Report                    | 5  |
|---------|----------------------------------------------------|----|
| 1       | Summary                                            | 8  |
| 1.1     | Annual energy consumption and costs                | 8  |
| 1.2     | Recommended energy efficiency projects             | 12 |
| 1.3     | Further steps                                      | 12 |
| 2       | Introduction                                       | 14 |
| 2.1     | Overall company information                        | 14 |
| 2.2     | Company structure                                  | 14 |
| 2.3     | Production modes                                   | 15 |
| 3       | Affairs of the company                             | 18 |
| 3.1     | Overall history of the company                     | 18 |
| 3.2     | Production outputs                                 | 19 |
| 3.3     | Energy consumption                                 | 22 |
| 3.4     | Energy management status                           | 24 |
| 3.5     | Overall assessment of focus areas for energy audit | 26 |
| 3.6     | Competences and organization of the energy audit   | 27 |
| 4       | Description of procedures in technology processes  | 29 |
| 4.1     | General production process                         | 29 |
| 4.2     | Ammonia Production Plant                           | 29 |
| 4.3     | Urea production plant                              | 31 |
| 4.4     | NPK production workshop                            | 33 |
| 4.5     | Auxiliary workshop                                 | 34 |
| 5       | Energy demands and supply capacity                 | 34 |
| 5.1     | Energy supply system                               | 34 |
| 5.2     | Main equipment lists                               | 38 |
| 5.3     | Overall energy mapping                             | 44 |
| 5.4     | Level-2 heat exchanger mapping                     | 46 |
| 5.5     | Water cooling system mapping                       | 52 |
| 6       | Financial - technical obligations                  | 60 |
| 6.1     | Basic financial constraints                        | 60 |
| 6.2     | Energy and standards                               | 60 |

| 6.3 | How to convert energy used to TOE units | . 60 |
|-----|-----------------------------------------|------|
| 6.4 | Evaluate energy saving measures         | . 61 |
| 7   | Energy saving solutions                 | 62   |
| 7.1 | Level B projects (screening list)       | . 62 |
| 7.2 | Level A projects                        | . 65 |

### **Sections in PVCFC Energy Audit Report**

The overall objective of the assignment aim is to conduct an Energy Audit report with the following targets:

- Conduct energy audit and prepare an energy audit report with potential energy-saving solutions based on circular 25/2020/TT-BCT related to "Regulations on planning and reporting on the implementation of plan for economic and efficient energy use; perform energy audit". The audit covers overall information of Petrovietnam Camau Fertilizer Joint stock company regarding annual energy consumption data and costs, introduction to manufacturing process and production equipment, overall mapping of energy consumption and breakdown of energy usage, and assessment of energy efficiency potentials.
- Because over 95% of the energy consumption related to heating and cooling, intensive investigations of
  the cooling system, main heat exchangers, and waste heat sources are realized as suggested in
  PVCFC\_Annex B Work. Heat exchangers are grouped in terms of location and functions to reduce the
  number of heat exchangers involved while can still be representative for the specific heat exchanger
  network.
- Evaluating and developing the energy management system as required by Circular 25/2020/TT-BCT, the
  evaluation of energy management is just based on the Vietnam requirement of energy management
  system of SEU.
- Energy saving opportunities will be presented in two types of projects at Level A and B. During the energy audit process, many observations will be made which could have potential energy savings through a large screening list can be created. This list of observation could be referred to as level B projects, where the potential energy savings and investment are evaluated based on estimates if possible. The screening list of level B opportunities should be evaluated and should be selected for further development. These projects will be called level A projects and should be developed enough for making a decision of whether to carry out a pre-feasibility study.

| Contents of audit report         | Requirements                                                                 |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------|--|--|--|--|
|                                  | Chapter 1: Summary                                                           |  |  |  |  |
| Summary of results from audit    | Overall annual energy consumption data and costs should be presented         |  |  |  |  |
|                                  | A table with identified energy efficiency projects, related savings and      |  |  |  |  |
| investments and payback-period.  |                                                                              |  |  |  |  |
|                                  | The identified energy efficiency projects shall be given priority and should |  |  |  |  |
|                                  | be ranked in terms of importance                                             |  |  |  |  |
|                                  | Proposed further steps should be described                                   |  |  |  |  |
|                                  | Chapter 2: Introduction                                                      |  |  |  |  |
| Introduction to the energy audit | Overall company information                                                  |  |  |  |  |
|                                  | Break down of company structure and production modes                         |  |  |  |  |
|                                  | Definition of scope and success criteria for the energy audit                |  |  |  |  |

#### Chapter 3: Affairs of the company

Overall history of the company, their products and operating data

Annual production outputs

Overall annual energy consumption (3 years)

Overall assessment of focus areas for energy audit and necessary competences and specialists to involve

PVCFC consumes approx. 500 mills. m3 natural gas per year, counted for 95% of the total energy consumption. The high consumption of natural gas is caused by the fact that the gas partly (65%) used as raw material for fertilizer production, partly (35%) used as fuel to heat the processes at the facility. So that the heating and cooling process will be the main focus of the audit.

Based on Annex B – Agreed work plan PVCFC, the focus of demonstration audit is:

- Rehabilitation of cooling water systems
- Utilization of waste heat and delta-T-hunting

#### Chapter 4: Description of procedures in technology processes

Principle diagrams for significant energy users

Introduction to manufacturing process and production equipment

Flow diagrams for production flow and energy usage:

- Ammonia plant
- Urea plant
- NPK plant
- Utility (including water cooling system, steam system, compressed air system ...)

#### Chapter 5: Energy demands and supply capacity

Mapping of energy consumption and breakdown of energy usage

Equipment lists, significant energy users

Breakdown of energy usage by end-use:

- Mapping of processes and heat exchangers
- Mapping of cooling exchangers
- Identification related to potencial of heat recovery and restructuring of cooling water system

#### Chapter 6: Financial - technical obligations

Economic framework for energy efficient solutions

Energy prices and relevant taxation

Legal framework for energy efficiency

Fuel and energy data

#### Chapter 7: Energy-saving solutions

# Assessment of energy efficiency potentials

Technical analysis of saving potentials via a variety of methodologies

#### Level B projects:

- Rehabilitation of cooling water systems: Direct use of cooling tower water for: Lean solution cooling, Ammonia condenser, Synt. Gas compressor intercooler, E04510A/B, E04303, E04306
- Apply coils sprayed local cooling towers for certain process
- Optimization of E21201H-T heat exchanger
- Use of VSDs control for pumps and fans
- Establishment of a biomass auxillary boiler (approx. 40 MW) to replace a natural gas fired boiler operated today
- Establishment of CCS-systems on reformers

#### Proposed Level A projects:

- Rehabilitation of cooling water systems: Direct use of cooling tower water for: Lean solution cooling, Ammonia condenser, Synt. Gas compressor intercooler, E04510A/B, E04303, E04306
- Apply coils sprayed local cooling towers for certain process

Technical and financial assessment of relevant investment projects

Overview of non-energy benefits

Table1: Checklist of requirements for energy audits

# 1 Summary

The PVCFC fertilizer plant was established in the period 2008-2011 with a first launch of commercial products early 2012. The fertilizer plant is designed with use of modern, western technology:

- The ammonia unit has been licensed from Haldor Topsoe, Denmark
- The urea unit has been delivered by Saipem, Italy
- The granulation unit has been delivered by Tec (Toyo), Japan
- The NPK unit has been delivered by Espindesa, Spain

Next to these main suppliers, equipment from international suppliers such as Siemens, Alfa Laval and BASF are applied for several purposes.

As such, PVCFC fertilizer is operated close to international best practices with an energy consumption and productivity among the top 10% best fertilizers plants worldwide.

#### 1.1 Annual energy consumption and costs

#### 1.1.1 Annual production outputs

- Urea product is the main product, accounting for the largest proportion in the production model of Ca Mau Fertilizer Plant.
- NPK products were put into production by the Plant from April 2021.
- NH3 product is an intermediate product to create other products of the Company.

Product data statistics for the period 2021 - 2023 are presented in the following table:

Table 1.1 Product data for the period 2021 – 2023

| Product | 2021    | 2022    | 2023    |
|---------|---------|---------|---------|
| NH3     | 508,537 | 520.29  | 541,517 |
| Urea    | 894,385 | 917,782 | 949.13  |
| NPK     | 48,132  | 114,331 | 150,092 |

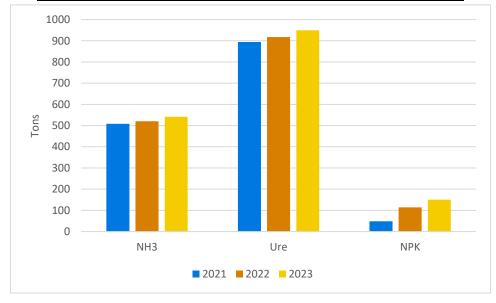



Figure 1.1. Product output chart for the period 2021 - 2023

#### 1.1.2 Annual energy usage

Based on the energy consumption database provided by the Plant, statistics on energy and water consumption data for the period 2021 - 2023 are presented in the table below:

Table1.2. Energy and water consumption statistics for the period 2021 - 2023

|    |                  |      |             | Total consumption |             |
|----|------------------|------|-------------|-------------------|-------------|
| No | Energy and water | Unit | 2021        | 2022              | 2023        |
| 1  | Electricity      | kWh  | 174,510,354 | 166,734,110       | 170,122,888 |
| 2  | Natural gas      | GJ   | 19,849,137  | 20,078,263        | 20,750,348  |
| 3  | Permeate Gas     | GJ   | 450,209     | 455,043           | 520,325     |
| 4  | Water            | m³   | 1,124,436   | 1,147,821         | 1,195,548   |

From the aggregated data and the energy conversion factor regulations (presented specifically in section 6.2), the energy consumption in TOE units (To compare different energy types with different units, the energy types will be converted to a standard unit of TOE - tons of oil equivalent) is shown in the following table:

Table 1.3. Energy consumption converted to TOE units in the period 2021 - 2023

| No | Energy      | Conversion factor | то      | E Unit Conversion | n       |
|----|-------------|-------------------|---------|-------------------|---------|
| No | Energy      | Conversion factor | 2021    | 2022              | 2023    |
| 1  | Electricity | 0.1543 TOE/MWh    | 26,927  | 25,727            | 26,249  |
| 2  | Natural gas | 0.026 TOE/GJ      | 527,783 | 512,084           | 529,225 |
|    | Tota        | 533,541           | 538,189 | 554,710           |         |

Energy consumption chart converted to TOE units:

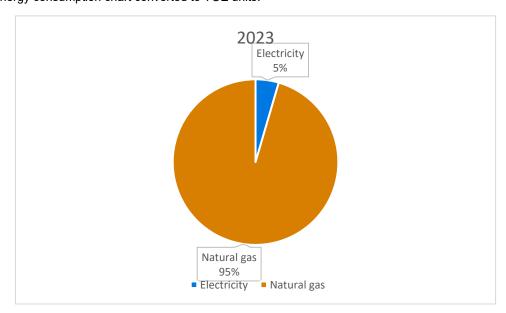



Figure 1.2. Energy chart converted to TOE units for the period 2021 - 2023

The high consumption of natural gas (approximately 500 million m³ per year) is due to the fact that the gas is partly (65%) used as a raw material for fertilizer production and partly (35%) used as fuel to heat processes at the facility.

Of the 35% of natural gas used for heating purposes mainly for reforming reaction, its distribution across various sections is illustrated in the figure below.

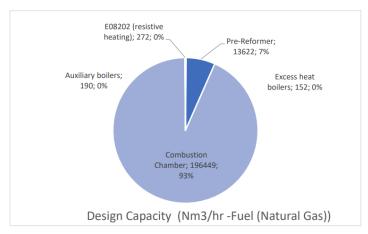



Figure 1.3. Fuel natural gas usage

The "combustion chambers" are the secondary reform steps in the ammonia plant.

#### 1.1.3 Annual energy cost

Total energy consumption costs for the period 2021 - 2023 are calculated as follows:

**Total energy costs** (million VND) No **Energy** 2021 2022 2023 1 Electricity 301,749 296,952 312,077 2 Natural gas 2,949,505 3,479,453 4,443,377 3 Water 11,453 11,679 12,171 Total 3,262,707 3,788,084 4,767,625

Table1.4Total energy costs for the period 2021 – 2023

The chart of the percentage of energy costs in the period 2021 - 2023 is shown in the following figure.

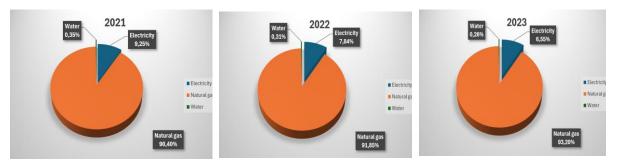



Figure 1.4. Cost ratio of energy types in the period 2021 - 2023

Natural gas costs account for a large proportion of the energy and water cost structure with over 90%, electricity accounts for second with about 7%, and the rest is water with a small proportion.

In the period 2021 - 2023, the energy cost ratio will change slightly depending on the demand and unit price. That partly shows the stability in the management of the Plant's consumption rate, thereby clearly showing the effectiveness of the policies on energy and raw materials that have been issued and applied.

The average energy cost rate is determined based on consumption data and energy cost statistics provided by the Plant.

| Table | 1.5 A | Average p | rice i | list 1 | or th | пе ре | rioa | 20 | 92 | 1 | - 2 | 20 | 2 | 3 |
|-------|-------|-----------|--------|--------|-------|-------|------|----|----|---|-----|----|---|---|
|-------|-------|-----------|--------|--------|-------|-------|------|----|----|---|-----|----|---|---|

| Energy and water | Umit    | Average price by stage |           |           |  |  |
|------------------|---------|------------------------|-----------|-----------|--|--|
| Energy and water | Unit    | 2021                   | 2022      | 2023      |  |  |
| Electricity      | VND/kWh | 1,729.1                | 1,781.0   | 1,834.4   |  |  |
| Natural gas      | VND/GJ  | 148,596.2              | 173,294.5 | 214,135.0 |  |  |
| Water            | VND/m³  | 10,185.5               | 10,175.2  | 10,180.5  |  |  |

#### 1.1.4 Specific energy consumption

Below the specific energy consumption for PVCFC is shown.

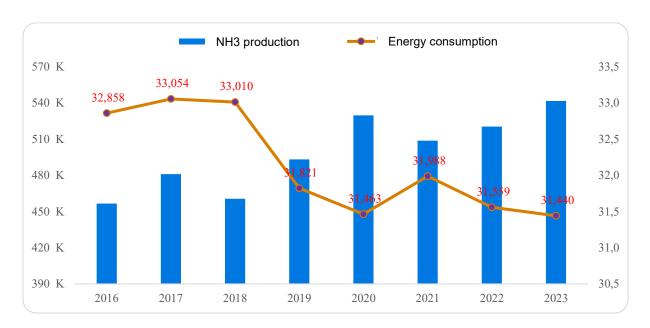



Figure 1.5. Specific Energy consumption of NH3 production per year (GJ/T.NH3)

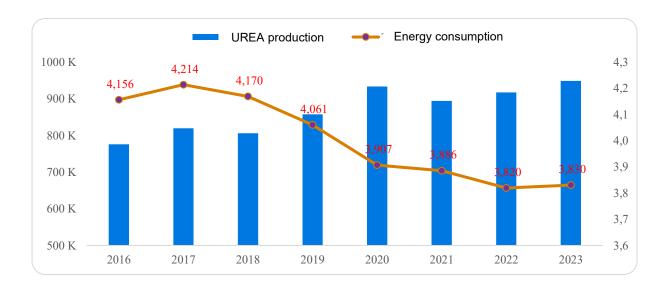



Figure 1.6. Specific energy consumption of Urea production per year (GJ/T.Urea)

For the ammonia part of the facility, the specific energy consumption is 31.4 GJ/ton, which with recent optimization projects at the facility is currently reduced to 30.6 GJ/ton and PVCFC aim at further reductions via recent upgrade-projects proposed by Haldor Topsøe.

#### 1.2 Recommended energy efficiency projects

Table1.6: Energy saving potential and investment cost estimates (level A projects)

| No. | Project                                                                 | Saving<br>Project   |                   | Investment<br>budget (USD) | Simple<br>payback<br>(year) |      |
|-----|-------------------------------------------------------------------------|---------------------|-------------------|----------------------------|-----------------------------|------|
|     |                                                                         | Energy<br>(GJ/year) | CO2<br>(ton/year) | Financial<br>(USD/year)    |                             |      |
| 1   | Optimization of Plate Heat exchangers E21201H-T                         | 9,811               | 550               | 98,112                     | 150,000                     | 1.5  |
| 2   | Replacement of Ammonia Refrigeration Condenser by Evaporative Condenser | 38,806              | 2,134             | 388,000                    | 300,000                     | 0.77 |
| 3   | Increase E04503 capacity to reduce energy loss at E04504                | 131,400             | 7,227             | 1,314,000                  | 2,000,000                   | 1.52 |
| 4   | Direct use of cooling tower water for intercooler of compressors        | 49,055              | 2,750             | 490,560                    | 500,000                     | 1.02 |

Details of level B and level A projects referred to section 7.

#### 1.3 Further steps

| Pro foosibility and considerations studies for projects report in table 1.6 peed to be elaborated in order to proper                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-feasibility and considerations studies for projects report in table 1.6 need to be elaborated in order to prepar<br>the company management for Final Investment Decisions (FID). |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |
|                                                                                                                                                                                      |

#### 2 Introduction

#### 2.1 Overall company information

Company name : Petrovietnam Ca Mau Fertilizer Joint Stock Company

Address : Lot D, Industrial Park Ward 1, Ngo Quyen Street, Ward 1, Ca Mau City.

Phone: 0290.3819000 Fax: 0290.3590501

Year of establishment : March 24, 2011

General Director : Mr. Van Tien Thanh

Type of ownership : Joint Stock Company

Main products : Nitrogen fertilizers, complex fertilizers, organic fertilizers, microbial fertilizers

and nitrogen compounds for agricultural production.

Number of working days : 365 days/year

#### 2.2 Company structure

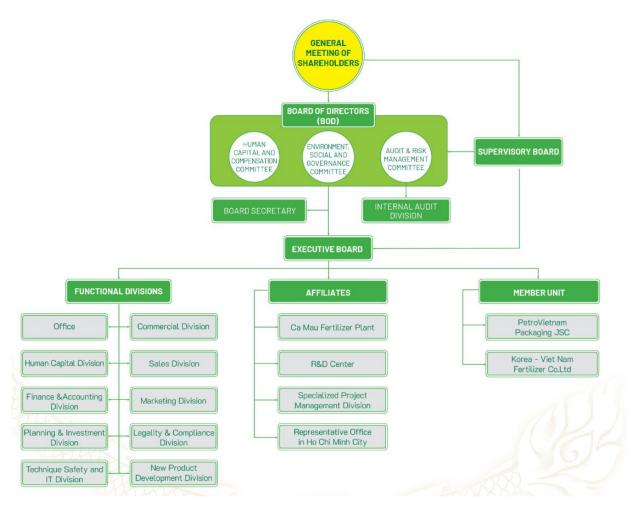



Figure 2.1. Organizational chart of the Company



Figure 2.2. Organizational chart of the Plant

#### 2.3 Production modes

Specific statistics on working hours of some areas are shown in detail in the following table:

Time of operation No Area average (hours/year) Office area 1 2,560 2 Auxiliary Workshop 8,760 3 Ammonia Workshop 8,760 4 Product Workshop 8.760 5 NPK Workshop 8,760

Table2.1. Summary table of operating hours of some energy-using areas

The operating mode of the equipment systems depends on the working time in each area, specifically:

- The system of compressors, pumps, fans and auxiliary equipment for production operates 24 hours/day;
- Air conditioning systems operate at different times depending on the area. Equipment serving production needs operates 24 hours a day, while office equipment operates an average of 8 hours a day.
- Office systems and equipment operate 8 hours/day during business hours.
- Production lines are designed to perform different production stages. The production line system is mainly automatic and semi-automatic lines. Workers play the role of operating, supervising, handling incidents during the production process and loading and unloading output products. In the production area, energy consumption accounts for the majority of the total energy consumption of the entire Plant. The operation of machinery and equipment is carried out according to the equipment management process issued by Ca Mau Fertilizer Plant.

The functional structure diagram of Ca Mau Nitrogenous Fertilizer Plant is shown in the following figure:

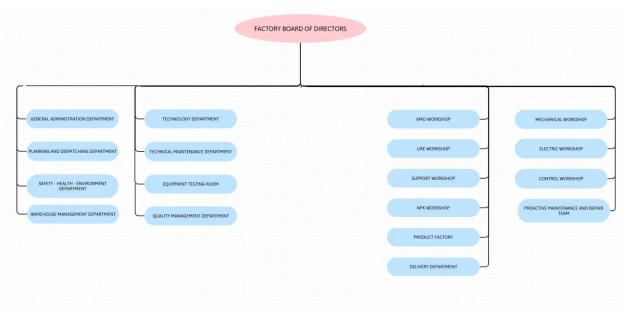



Figure 2.3. Functional structure diagram of the Plant

#### 2.3.1 Overall objectives of the Assignment

The overall objective of the assignment aim is to conduct an Energy Audit report with the following targets:

- Conduct energy audit and prepare an energy audit report with potential energy-saving solutions based on circular 25/2020/TT-BCT related to "Regulations on planning and reporting on the implementation of plan for economic and efficient energy use; perform energy audit". The audit covers overall information of Petrovietnam Camau Fertilizer Joint stock company regarding annual energy consumption data and costs, introduction to manufacturing process and production equipment, overall mapping of energy consumption and breakdown of energy usage, and assessment of energy efficiency potentials.
- Because over 95% of the energy consumption related to heating and cooling, intensive investigations of the cooling system, main heat exchangers, and waste heat sources are realized as suggested in PVCFC\_Annex B - Work. Heat exchangers are grouped in terms of location and functions to reduce the number of heat exchangers involved while can still be representative for the specific heat exchanger network.
- Evaluating and developing the energy management system as required by Circular 25/2020/TT-BCT, the evaluation of energy management is just based on the Vietnam requirement of energy management system of SEU.
- Energy saving opportunities will be presented in two types of projects at Level A and B. During the energy audit process, many observations will be made which could have potential energy savings through a large screening list can be created. This list of observation could be referred to as level B projects, where the potential energy savings and investment are evaluated based on estimates if possible. The screening list of level B opportunities should be evaluated and should be selected for further development. These projects will be called level A projects and should be developed enough for making a decision of whether to carry out a pre-feasibility study.

#### 2.3.2 Scope of the assignment

The scope of cooperative activities is limited to:

- Petrovietnam Camau Fertilizer Joint Stock Company

Office address: Lot D, Industrial Zone Ward 1, Ngo Quyen, Ward 1, Ca Mau City

Plant address: Khanh An, U Minh District, Ca Mau City

- Conduct energy audit complying with the referred to MOIT energy audit guideline and Energy Mapping User guide from DEPP3 project.
- Working with Denmark Experts to carry out the Energy Audit Report with the Energy Mapping according to guideline, evaluating and developing the energy management systemand project development at levels A and B.

# 3 Affairs of the company

#### 3.1 Overall history of the company

Established in 2011, Ca Mau Petroleum Fertilizer Joint Stock Company (PVCFC, Hose: DCM) is proud to be the leading and only manufacturer of granular Urea fertilizer in Vietnam. As of 2023, Ca Mau Fertilizer's products are present in about 18 countries around the world, with export output in 2023 reaching 344 thousand tons, accounting for about 26% of total consumption output, export value reaching 136 million USD, accounting for about 25% of fertilizer product revenue. Of which, Cambodia is the largest export market with output and export value accounting for more than 60%.



Figure 3.1. Company Image

With clear orientation and goals, the brand Ca Mau Fertilizer - Golden Season Pearl has gradually affirmed its position in Vietnam and the region, contributing significantly to stabilizing the fertilizer market and ensuring national food security. The Plant is committed to continuing to invest in research and development, gradually launching new product lines in an environmentally friendly direction for a more sustainable and prosperous Vietnamese agriculture.



Figure 3.2. Overview of Ca Mau Fertilizer Plant

Throughout 13 years of formation and development, the Company has gone through the following important milestones:

- 2008:Ca Mau Fertilizer Plant officially started construction with a total initial capital of more than 900 million
   USD, designed capacity of 800,000 tons/year.
- 2011:March 9, 2011, Established Ca Mau Petroleum Fertilizer Company Limited (under Vietnam National Oil and Gas Group).
- 2012:Ca Mau Fertilizer Plant has its first commercial product. On April 24, 2012, the plant was completed and handed over to Vietnam Oil and Gas Group/PetroVietnam Ca Mau Fertilizer Company Limited (PVCFC) for commercial operation.
- **2014:**PVCFC is officially recognized as a National Brand.
- 2023:On December 7, 2023, Ca Mau Fertilizer reached the milestone of 10 million tons of converted Urea.



Figure 3.3. Plant Milestones

#### 3.2 Production outputs

#### 3.2.1 Urea products

Urea product is the main product, accounting for the largest proportion in the production model of Ca Mau Fertilizer Plant.

Urea product data statistics for the period 2021 - 2023 are presented in the following table:

Table 3.1. Urea product data for the period 2021 - 2023

|       |         | Urea products |         |
|-------|---------|---------------|---------|
| Month | Unit:   | To            | on      |
|       | 2021    | 2022          | 2023    |
| 1     | 75,236  | 82,204        | 83,253  |
| 2     | 73,721  | 74,451        | 75,227  |
| 3     | 68,683  | 82,662        | 85,478  |
| 4     | 78,240  | 79,615        | 81,540  |
| 5     | 81,823  | 74,769        | 83,375  |
| 6     | 78,771  | 79,448        | 81,540  |
| 7     | 79,322  | 82,841        | 83,590  |
| 8     | 80,311  | 45,871        | 49,185  |
| 9     | 78,424  | 68,475        | 79,760  |
| 10    | 81,242  | 83,417        | 83,660  |
| 11    | 42,593  | 79,859        | 80,596  |
| 12    | 76,020  | 84,170        | 81,925  |
| Total | 894,385 | 917,782       | 949,130 |

Monthly Urea Product Output Chart of The Plant is shown in the figure below:

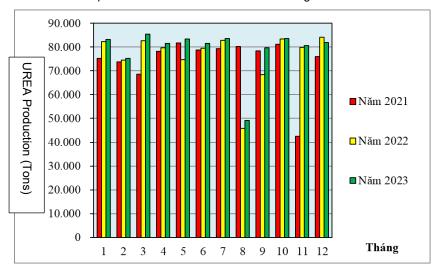



Figure 3.4. Urea production chart for the period 2021 - 2023

Urea products account for the largest proportion of the Plant's products. Due to the maintenance of the gas platform supplying the Ca Mau Gas, Power and Fertilizer Industrial Complex, production output was interrupted in certain months (November 2021 and August 2022, 2023). In general, Urea output always increased in the period 2021 - 2023. This shows the production efficiency and stable development of the Ca Mau Fertilizer Plant in recent times.

#### 3.2.2 NPK products

NPK products have been put into production by the Plant since April 2021. Total NPK output over the years is shown in the following table:

Table 3.2NPK product data for the period 2021 - 2023

| Year       | 2021        | 2022    | 2023    |  |  |  |
|------------|-------------|---------|---------|--|--|--|
| NPK output | 48,132      | 114,331 | 150,092 |  |  |  |
| Unit       | Tons of NPK |         |         |  |  |  |

NPK products are one of the main products in the Company's diversified product chain. NPK output has not been stable over the years due to the new production line being put into operation, unstable technology, and insufficient raw material sources to meet production requirements. In addition, the NPK market is unique and fluctuates erratically, causing many difficulties in stabilizing the supply chain. However, NPK output tends to increase over the years, thereby showing the stable development in NPK production of the Plant.

#### 3.2.3 NH3 product

NH3 product is an intermediate product to create other products of the Company. NH3 output produced in the period 2021 - 2023 is shown in the following table:

Table 3.3. NH3 product data for the period 2021 - 2023

|       |         | NH3 product |         |
|-------|---------|-------------|---------|
| Month | Unit:   | To          | on      |
|       | 2021    | 2022        | 2023    |
| 1     | 41,966  | 46,752      | 47,642  |
| 2     | 41,774  | 42,367      | 42,787  |
| 3     | 38,198  | 46,960      | 48,208  |
| 4     | 44,829  | 45,455      | 46,315  |
| 5     | 46,392  | 42,055      | 47,798  |
| 6     | 44,962  | 45,444      | 46,264  |
| 7     | 45,147  | 46,919      | 47,475  |
| 8     | 46,110  | 26,411      | 28,412  |
| 9     | 44,592  | 38,161      | 46,535  |
| 10    | 46,011  | 47,022      | 47,911  |
| 11    | 25,288  | 45,030      | 46,670  |
| 12    | 43,267  | 47,713      | 45,500  |
| Total | 508,537 | 520,290     | 541,517 |

The chart of NH3 product output over the months is shown in the figure below:

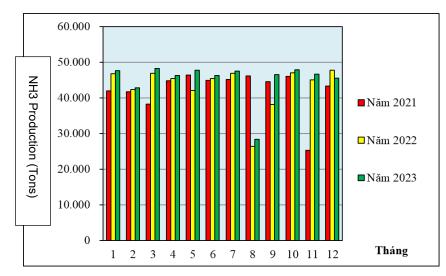



Figure 3.5. NH3 production chart for the period 2021 - 2023

NH3 product is an intermediate product for the production process of the Plant, playing an important role in the production of Urea and NPK. The NH3 production output of the Plant is maintained at a stable level and increased over the years.

Comparing production output over the months in the period 2021-2023, it can be seen that production output is always higher than the design load (100% load) and total output over the years always increases. Some months have low output due to the characteristics of the overall maintenance work of the Plant, which is carried out annually according to the periodic maintenance plan of the gas supply platform.

#### 3.3 Energy consumption

Based on the energy consumption database provided by the Plant, statistics on energy and water consumption data for the period 2021 - 2023 are presented in the table below:

Table 3.4. Energy and water consumption statistics for the period 2021 - 2023

| No | Energy and water Unit |     |             | Total consumption |             |
|----|-----------------------|-----|-------------|-------------------|-------------|
|    | -                     |     | 2021        | 2022              | 2023        |
| 1  | Electricity           | kWh | 174,510,354 | 166,734,110       | 170,122,888 |
| 2  | Natural gas           | GJ  | 19,849,137  | 20,078,263        | 20,750,348  |
| 3  | Permeate Gas          | GJ  | 450.209     | 455,043           | 520,325     |
| 4  | Water                 | m³  | 1,124,436   | 1,147,821         | 1,195,548   |

Table 3.5. Comparison of planned and actual energy production and consumption output in the period 2021 - 2023

|      |         | Output (thousa | and tons/year) | Electricity       | Gas                 |  |
|------|---------|----------------|----------------|-------------------|---------------------|--|
|      | Year    | Urea NPK       |                | Consumption (kWh) | Consumption<br>(GJ) |  |
| 2021 | Plan    | 860            | 155            | 177,950,000       | 20,161,341          |  |
| 2021 | Reality | 894,385        | 48,132         | 174,510,354       | 19,849,137          |  |
| 2022 | Plan    | 860            | 80             | 175,000,000       | 22,875,045          |  |
| 2022 | Reality | 917,782        | 114,331        | 166,734,110       | 20,078,263          |  |
| 0000 | Plan    | 882            | 160            | 175,000,000       | 23,623,333          |  |
| 2023 | Reality | 949,130        | 150,092        | 170,122,888       | 20,750,348          |  |

Compared with the annual energy saving and efficient use plan that the Company reported on dataenergy.vn, it shows that the output of main products mostly exceeds the plan. Moreover, the actual energy consumption is lower than the plan. This shows the efficient and economical use of energy at PVCFC.

From the aggregated data and the energy conversion factor regulations (presented specifically in section 6.2), the energy consumption in TOE units (To compare different energy types with different units, the energy types will be converted to a standard unit of TOE - tons of oil equivalent) is shown in the following table:

Table 3.6. Energy consumption converted to TOE units in the period 2021 - 2023

| Na | Faces                    | 0                 | TOE Unit Conversion |         |         |
|----|--------------------------|-------------------|---------------------|---------|---------|
| No | Energy                   | Conversion factor | 2021                | 2022    | 2023    |
| 1  | Electricity              | 0.1543 TOE/MWh    | 26,927              | 25,727  | 26,249  |
| 2  | Natural gas 0.026 TOE/GJ |                   | 527,783             | 512,084 | 529,225 |
|    | Tota                     | 533,541           | 538,189             | 533,541 |         |

Energy consumption chart converted to TOE units:

Natural gas
95%
Electricity
Natural gas

Figure 3.6. Energy chart converted to TOE units for the period 2021 - 2023

The proportion of energy sources used converted to TOE units has fluctuated little over the years, in which natural gas still accounts for the largest proportion of energy used, with more than 94% of the total converted energy; electricity accounts for the remainder.

To improve efficiency and reduce operating costs, the Plant may consider energy-saving solutions for the natural gas system and the electrical system.

Overall, the TOE conversion energy usage ratio chart shows the stability in the Plant's operations. This increases the sustainability and operational efficiency of the Plant.

#### 3.4 Energy management status

The Energy Management Matrix has 6 columns and 5 rows. Each column represents one of the 6 aspects of energy management:

- Corporate Energy Policy
- Energy management organizational structure
- Incentive mechanisms to achieve higher energy efficiency
- Energy management information system
- Energy saving marketing
- Investing in energy conservation standards

The ascending rows (0 - 4) represent the level of acceptance of each energy management aspect (0 being the lowest) and 4 being the highest). The cells are completed according to the opinions of the senior leaders of the enterprise.

Analyzing a company's energy management dashboard will reveal its strengths and weaknesses in energy management. The following are the criteria used to evaluate an energy management system:

#### 1. Energy policy

| Level | Energy policy                                                                                         |   |
|-------|-------------------------------------------------------------------------------------------------------|---|
| 4     | Energy policy, action plan and regular review, with management commitment as part of strategy         |   |
| 3     | There is an energy policy, but no active commitment from top leadership                               |   |
| 2     | Informal energy policies are established by the energy manager or senior managers of the departments. | х |
| 1     | An unwritten set of principles                                                                        |   |
| 0     | No clear policy                                                                                       |   |

#### 2. Organization

| Level | Organization                                                                                  |   |
|-------|-----------------------------------------------------------------------------------------------|---|
| 4     | Energy management is fully integrated into the management structure. Clear responsibility for |   |
|       | energy consumption and energy costs is assigned.                                              |   |
| 3     | The energy manager is responsible to an energy management team representing all users,        |   |
|       | headed by a member of senior management.                                                      |   |
| 2     | Contact with users is primarily through an ad-hoc committee, led by a senior department       | X |
|       | manager.                                                                                      | ^ |
| 1     | Informal communication between engineers and a few users                                      |   |
| 0     | No contact with user                                                                          |   |

#### 3. Motivation

| Level | Motivation                                                                                                                |   |
|-------|---------------------------------------------------------------------------------------------------------------------------|---|
| 4     | Formal and informal traditional channels are used regularly by energy managers and energy management staff at all levels. |   |
| 3     | The energy management team is used as a main channel with direct contact with large energy consumers.                     |   |
| 2     | Contact with users is primarily through an informal management team headed by the department's senior management.         | x |
| 1     | Informal communication between engineers and a few users                                                                  |   |
| 0     | No contact with user                                                                                                      |   |

#### 4. Energy Management Information System

| Level | Energy management information system                                                                                             |   |
|-------|----------------------------------------------------------------------------------------------------------------------------------|---|
| 4     | Comprehensive system with targets, consumption monitoring, error identification, savings quantification and budgeting, tracking  | х |
| 3     | Target monitoring reports are based on energy meters at each consumer, but savings are not communicated to consumers.            |   |
| 2     | Target monitoring reports are based on NL meters at source. Energy Costs are informally mentioned in the budget.                 |   |
| 1     | NL costs are reported based on invoices only. Engineers prepare reports for internal use within the engineering department only. |   |
| 0     | No information system. No energy consumption calculation.                                                                        |   |

#### 5. Marketing of energy conservation achievements

| Level | Marketing of energy conservation achievements                                                                     |   |  |
|-------|-------------------------------------------------------------------------------------------------------------------|---|--|
| 4     | Marketing to effectively promote human resources and human resource management inside and outside the enterprise. |   |  |
| 3     | Employee awareness programs and regular advertising campaigns                                                     |   |  |
| 2     | There is some informal training on employee awareness.                                                            | х |  |
| 1     | Informal contacts to promote effective NL                                                                         |   |  |
| 0     | Not promoting NL effectively                                                                                      |   |  |

#### 6.Invest in criteria for saving/improving energy efficiencyquantity

| Level | Investment                                                                                                                       |   |
|-------|----------------------------------------------------------------------------------------------------------------------------------|---|
| 4     | Actively raise environmental awareness with detailed investment due diligence programs for all new and improvement opportunities | х |
| 3     | Use the payback period criteria as for all other investments.                                                                    |   |
| 2     | Investing using only short-term payback period criteria                                                                          |   |
| 1     | Only low cost measures are used.                                                                                                 |   |
| 0     | No investment in improving energy efficiency                                                                                     |   |

Based on the results of interviews and investigations to evaluate the energy management system at the Plant, an assessment table of the current energy management system was developed, specifically as follows:

Table 3.7. Results of assessment of the current status of the energy management system

| Level | Energy policy | Organization | Motivation | Information<br>system | Marketing | Investment |
|-------|---------------|--------------|------------|-----------------------|-----------|------------|
| 4     |               |              |            | х                     |           | х          |
| 3     |               |              |            |                       |           |            |
| 2     | х             |              | Х          |                       | X         |            |
| 1     |               | x            |            |                       |           |            |
| 0     |               |              |            |                       |           |            |

Below is the matrix of results of the energy management system assessment survey:

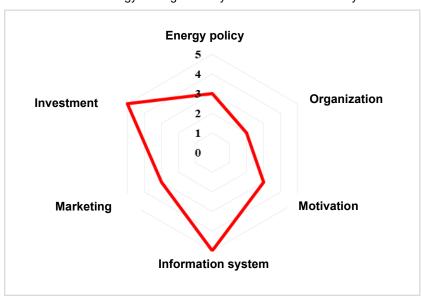



Figure 3.7. Chart of the survey to evaluate the quality management system

The energy management system of Ca Mau Fertilizer Plant is currently at an average level. At the end of 2023, the Company issued a decision to establish an energy management team and have an energy manager. However, due to the short time it was established, the energy management system still has many limitations and does not have specific policies and plans. Energy saving activities are currently localized, at a time when they have not been widely disseminated and synchronized throughout the Plant. This raises an urgent need to quickly put the energy management system into effective operation.

To overcome these challenges and improve efficiency in energy management, the auditor recommended that Ca Mau Fertilizer Plant should synchronize and accelerate the process of setting up plans, targets and risk assessment processes, as well as provide a framework for continuous assessment and improvement.

In addition, the auditor also recommended that Ca Mau Fertilizer Plant send its staff to attend awareness classes or training courses on energy efficiency and conservation in accordance with the law. Training staff on energy-saving methods and technologies will help increase awareness and the ability to implement energy-saving measures in the production process.

#### 3.5 Overall assessment of focus areas for energy audit

PVCFC consumes approx. 500 mills. m3 natural gas per year, counted for 95% of the total energy consumption. The high consumption of natural gas is caused by the fact that the gas partly (65%) used as raw material for fertilizer

production, partly (35%) used as fuel to heat the processes at the facility. So that the heating and cooling process will be the main focus of the audit.

During the site visit, a number of focus areas for further energy audit activities were identified and discussed with key-staff at the facility:

- 1. Rehabilitation of cooling systems
- 2. Use of VSDs to control the capacity of large fans and pumps
- 3. Increased power production with ORC
- 4. Rehabilitation of boiler feedwater preheating system
- 5. Delta-T-hunting and improved heat recovery
- 6. Assessment of potential for use of biomass, CO2-capture and green hydrogen
- 7. Rehabilitation of condensers in ammonia chiller system to improve COP
- 8. Optimization of compressed air systems operation
- 9. New KPIs to monitor operation of instrument air systems and cooling tower systems

After discussions, the following areas were concluded to be most important:

- Rehabilitation of cooling water systems
- Utilization of waste heat and delta-T-hunting

#### 3.6 Competences and organization of the energy audit

Information about the energy audit unit

Company name : Bach Khoa Energy Conservation Joint Stock Company

Address : North: 27, lane 262B, Nguyen Trai, Thanh Xuan District, Hanoi.

South: 156 Nam Ky Khoi Nghia, District 1, Ho Chi Minh City.

Year of establishment : 2013

General Director : Mr. Bui Thanh Hung

Services provided : Energy audit, GHG inventory, energy manager training,...

Competency and : 10 years of experience in the field of energy auditing, the team includes PhDs,

experience Masters who are currently lecturers at Hanoi University of Science and

Technology and engineers in energy management, thermal engineering and

energy technology.

The energy audit program was conducted by Bach Khoa Energy conservation Joint Stock Company in collaboration with technical staff and production operation staff of Ca Mau Fertilizer plant.

## Bach Khoa Energy Conservation Joint Stock Company

| Full name       | Position                                              | Main mission                                                                                                                                               |
|-----------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Do Manh Hung    | - Team leader - Energy auditor - Energy saving expert | <ul><li>General management</li><li>Project quality control</li><li>Build and calculate energy saving solutions</li><li>Write energy audit report</li></ul> |
| Ha Quang Thinh  | - Project management - Coordinator                    | - Contact the Plant - Project progress control                                                                                                             |
| Ho Huu Phung    | - Energy auditor - Heat exchanger expert              | <ul><li> Data collection</li><li> Analyze collected data</li><li> Build and calculate energy saving solutions</li><li> Write energy audit report</li></ul> |
| Nguyen Ba Chien | - Energy auditor<br>- Cooling system expert           | <ul><li>Analyze collected data</li><li>Write energy audit report</li><li>Field inspection and measurement</li></ul>                                        |
| Vu Tien Dat     | - Member                                              | <ul><li>Analyze collected data</li><li>Write energy audit report</li></ul>                                                                                 |
| Tran Quang Anh  | - Member                                              | - Analyze collected data - Write energy audit report                                                                                                       |
| Vu Duc Anh      | - Member                                              | - Analyze collected data - Write energy audit report                                                                                                       |

#### Ca Mau Fertilizer Plant

| Full name        | Position                                   | Main mission                                  |  |
|------------------|--------------------------------------------|-----------------------------------------------|--|
|                  | - Chief specialist in charge of Technology | - Project progress management                 |  |
|                  |                                            | - Support field inspection and measurement    |  |
| Tran Ngoc Thanh  |                                            | process                                       |  |
|                  |                                            | - Provide relevant information for the energy |  |
|                  |                                            | audit process                                 |  |
|                  | - Technical Specialist                     | - Support field inspection and measurement    |  |
| Nguyen Tung Quan |                                            | process                                       |  |
|                  |                                            | - Provide relevant information for the energy |  |
|                  |                                            | audit process                                 |  |

# 4 Description of procedures in technology processes

#### 4.1 General production process

The product of Ca Mau Fertilizer Plant is Urea with a capacity of  $2,385 \text{ T/day} \sim 800,000 \text{ T/year}$ . The Plant's production process diagram is shown as follows:

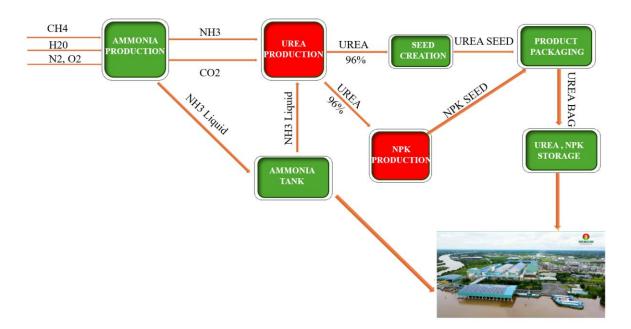



Figure 4.1. General production process of the Plant

The raw material source is natural gas exploited from mines in the overlapping sea area of Malaysia - Vietnam, brought to Khanh An Industrial Park, U Minh District, Ca Mau Province. Gas is transported by 18-inch diameter pipeline with a total length of 325km (undersea 298km, onshore 27km).

Natural gas after entering the Plant is used for the boiler of the Auxiliary workshop. The Auxiliary boiler produces high pressure steam, mixed with steam produced from the excess heat steam boiler to provide steam for consumers in the whole Plant.

In addition, natural gas is supplied to the Ammonia plant to be used as fuel in the primary Reforming furnace and as raw material to synthesize NH3 (the main raw material for Urea production).

#### 4.2 Ammonia Production Plant

In the Plant, ammonia is produced from synthesis gas containing hydrogen and nitrogen in a ratio of approximately 3:1. In addition to the above compounds, the synthesis gas also contains a limited amount of inert gases such as argon and methane. The H2 supply is from demi-water and hydrocarbons in natural gas. The N2 supply is from air. In addition to ammonia, the plant also produces a quantity of CO2, the CO2 supply is from hydrocarbons in natural gas.

The operation of the Ammonia plant is briefly described in the figure below:

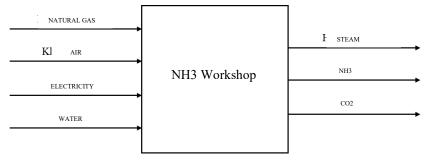



Figure 4.2.Summary of Ammonia Plant Operations

The steps required to produce ammonia from the above mentioned raw materials are as follows:

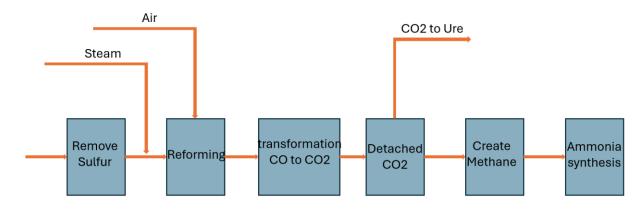



Figure 4.3. Steps required to produce Ammonia

Natural gas is desulfurized in the desulfurization unit to parts per million (0.05 ppm). The desulfurized gas participates in the reforming reaction with steam and air to form process gas. The composition of process gas mainly includes gases such as: H2, N2, CO, CO2 and steam.

During the gas cleaning stage, CO is converted to CO2. CO2 is then separated from the process gas at the CO2 separation unit. The remaining CO and CO2 in the process gas are converted to methane in the methanizer by reacting with H2 before entering the synthesis loop.

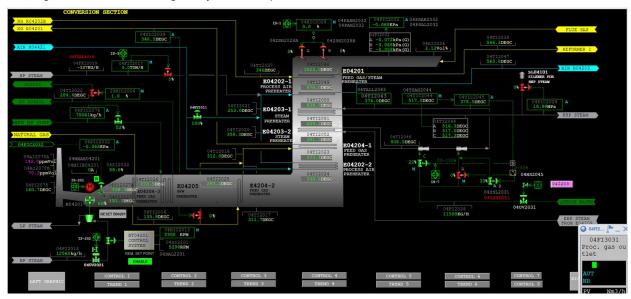



Figure 4.4.Reformer heat recovery system

Synthesis gas is compressed to high pressure and fed into the ammonia synthesis tower, where it reacts to form ammonia.

To limit the accumulation of argon and methane in the synthesis loop, a small stream of gas is vented. The liquid ammonia is depressurized and the inert and dissolved gases are released. The capacity of the ammonia plant is 1,350 MTPD ammonia and 1,790 MTPD CO2. The ammonia plant can be operated and ammonia can be exported in two ways:

- Method 1: Ammonia product is brought to the urea production plant at a temperature of 25oC and a pressure of 2.45 MPag.
- Method 2: Product ammonia is transferred to an ammonia tank at -32oC and 5 MPag pressure.

#### 4.3 Urea production plant

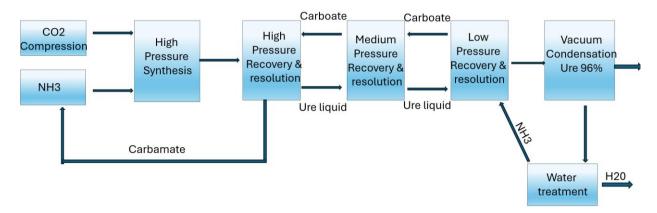



Figure 4.5. Production process at Urea workshop

This process is characterized by operating the Urea synthesis cluster at a pressure of about 15.6 MPa (G), with a molar ratio of NH3/CO2 in the reactor of about 3.1~3.6. This allows the conversion of CO2 in the reaction tower to Urea to be 60~63%, the designed perforated discs have the effect of preventing backflow and promoting the absorption of gas into liquid. There are two types of reactions occurring simultaneously in the Urea synthesis unit.

NH2COONH4→NH2CONH2 + H2O – 4200 kcal/kmol Urea (0.1013 MPa; 250oC) (2)

Reaction (1) is strongly exothermic, reaction (2) is slightly endothermic and occurs in the liquid phase at a slow reaction rate. The synthesis is followed by the decomposition (and recovery) of the unconverted substances and is carried out in three stages: high-pressure decomposition in the Stripper, medium-pressure decomposition in the medium-pressure decomposition, low-pressure decomposition in the low-pressure decomposition. The decomposition reactions are the reverse reactions of reaction (1):

From the reaction equation, it can be seen that the reaction is promoted by reducing pressure and heating. The Urea solution from the synthesis device enters the stripper device under equivalent pressure. Here, the carbamate part that is not converted into Urea will be decomposed. Thanks to the stripping effect of NH3, the overall efficiency of the high-pressure synthesis cluster for CO2 reaches about 80 - 85%.

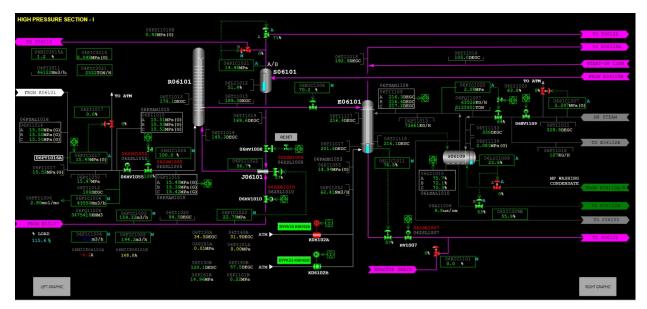



Figure 4.6. High pressure assembly

After leaving the stripper, the remaining carbamate and ammonia will be recovered in two stages under the pressure of 1.95 MPa (G) (medium pressure stage) and 0.4 MPa (G) (low pressure stage) respectively. NH3, CO2 gas coming out from the top of the stripper will be mixed with the circulating carbamate liquid from the intermediate pressure stage and condensed in the first and second carbamate condensers under the same pressure as the Stripper pressure. Here, MLP (medium pressure saturated steam) and LP (low pressure saturated steam) are also generated. The produced steam will be used in the downstream sections. The inert gas after separation will be sent through the MP (medium pressure) stage, the final carbamate liquid is circulated to the bottom of the synthesis device through a liquid/liquid jet pump using the high pressure ammonia stream fed into the synthesis tower as a driving force. This ejector and the above mentioned carbamate condensers allow horizontal arrangement, which is one of the main features of Snamprogheti technology.

The heat recovered thus allows significant savings in total steam and clean water consumption:

- Preheat the Ammonia stream before entering the synthesis unit by the gas stream from the low pressure decomposition stage and the water treatment stage.
- Heating the vacuum pre-concentrator by the heat released from the absorption of the gas stream from the intermediate pressure digestion stage and the carbonate liquor stream.
- Recover all condensate technologically as boiler feed water.
- The high pressure carbamate stream circulates back to the high pressure synthesis loop preheated by the process condensate stream after treatment leaving the distillation tower.

The main steps in the synthesis of Urea include:

- Urea synthesis and recovery of NH3, CO2 at high pressure.
- Purify Urea solution and recover NH3 and CO2 gases in medium and low pressure stages;
- Vacuum concentration;
- Create seeds;
- Condensate treatment technology;
- Auxiliary system: steam network, washing water network.

#### 4.4 NPK production workshop

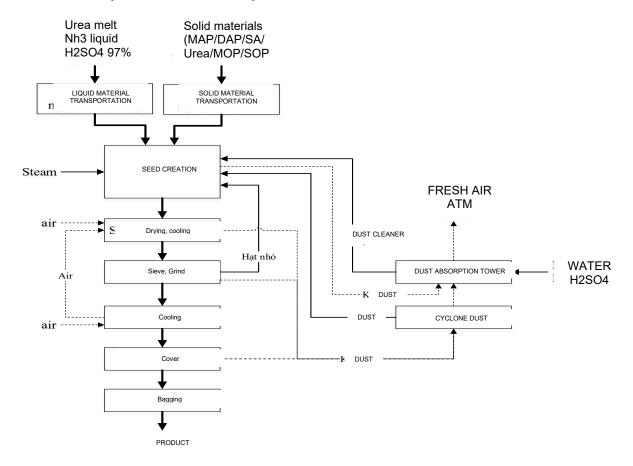



Figure 4.7. Production process at NPK workshop

NPK fertilizer is a type of fertilizer obtained by mixing finished fertilizers together. The input materials include liquefied Urea, liquid NH3, concentrated sulfuric acid (H2SO4), solid Urea, Potassium, MAP, DAP, and other trace elements mixed together. Then the mixture is sent to the granulation tower, where the mixture is heated by steam at a fixed temperature to form a homogeneous liquid mass. Then the liquid mass is dropped into the centrifugal granulator, at this time the liquid particles are shot out and fall freely in the tower, the high-speed fan system is blown from bottom to top to reduce the falling speed of the particles, both cooling and drying the particles. Then, the particles are sent to the sieve/grinder. Particles that are too large will be crushed, while particles that are too small will be returned to the granulation tower for melting. Dust is also collected during this process. After size processing, the granules are completely cooled by the fan system and then transferred to the film coating system to avoid clumping, then packaged into finished products.

#### 4.5 Auxiliary workshop

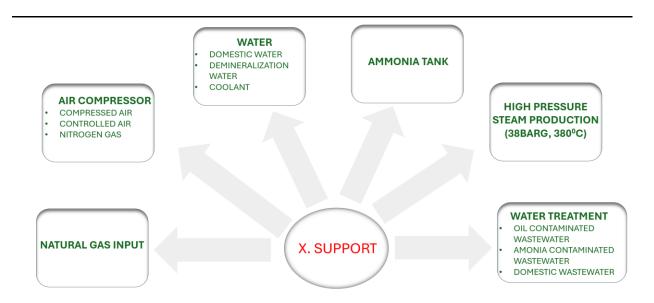



Figure 4.8. Auxiliary workshop production diagram

The Auxiliary Workshop is responsible for supplying gas, steam and water to the production lines; helping the production lines operate stably. In addition, the Auxiliary Workshop also plays a role in transporting oil-contaminated wastewater, ammonia-contaminated wastewater and domestic wastewater to the wastewater treatment system.

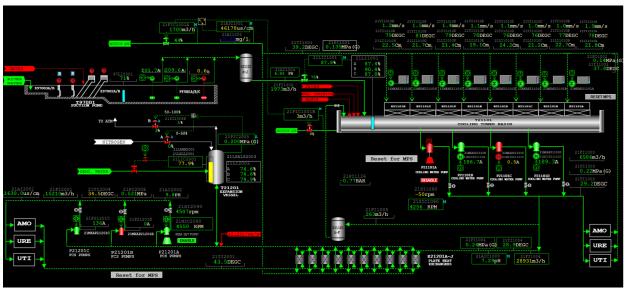



Figure 4.9. Cooling water system

# 5 Energy demands and supply capacity

#### 5.1 Energy supply system

#### 5.1.1 Electrical system

Electricity serves the machinery and equipment system in the production line and supplies other auxiliary systems. The parameters and technical characteristics of the transformer system are presented in the table below:

Table 5.1.Plant transformer information

| No | Load name                                              | Power<br>(kVA) | Secondary<br>voltage (kV) | Primary<br>voltage (kV) |
|----|--------------------------------------------------------|----------------|---------------------------|-------------------------|
| 1  | MAIN TRANSFORMER 1 (MBA TR01)                          | 25             | 6.6                       | 20                      |
| 2  | MAIN TRANSFORMER 2 (MBA TR02)                          | 25             | 6.6                       | 20                      |
| 3  | AMMONIA TRANSFORMER (MBA TR03)                         | 2.5            | 0.4                       | 6.6                     |
| 4  | AMMONIA TRANSFORMER (MBA TR04)                         | 2.5            | 0.4                       | 6.6                     |
| 5  | UREA AND GRANULATION TRANSFORMER (MBA TR05)            | 2.5            | 0.4                       | 6.6                     |
| 6  | UREA AND GRANULATION TRANSFORMER (MBA TR06)            | 2.5            | 0.4                       | 6.6                     |
| 7  | CIRCULATION COOLING WATER TRANSFORMER (MBA TR07)       | 1.6            | 0.4                       | 6.6                     |
| 8  | CIRCULATION COOLING WATER TRANSFORMER (MBA TR08)       | 1.6            | 0.4                       | 6.6                     |
| 9  | UREA HANDLING AND STORAGE (MBA TR09)                   | 1.6            | 0.4                       | 6.6                     |
| 10 | UREA HANDLING AND STORAGE (MBA TR10)                   | 1.6            | 0.4                       | 6.6                     |
| 11 | SERVICE FACILITY (MBA TR11)                            | 1.25           | 0.4                       | 6.6                     |
| 12 | DIESEL GENERATOR (Urea Power Station Diesel Generator) | 1.5            | 0.4                       | 0.4                     |
| 13 | NPK Substation (TR08101)                               | 1600           | 0.42                      | 6.6                     |
| 14 | NPK Substation (TR08102)                               | 1600           | 0.42                      | 6.6                     |
| 15 | Bagging NPK Substation (TR08201)                       | 500            | 0.42                      | 6.6                     |
| 16 | 22/6.6Kv extended MBA                                  | 12500          | 6.6                       | 22                      |

Table 5.2: Evaluation table of transformer system performance quality

| No | Parameter    | Average value           | Comment                                                   |
|----|--------------|-------------------------|-----------------------------------------------------------|
|    | Operating 1  | 166 kW - 11,730 kW      | The transformer operates at an average power equivalent   |
|    |              |                         | to 17-45% of the load.                                    |
| 1  |              |                         | The auditing unit conducts measurements and checks the    |
|    | capacity     |                         | power quality at distribution cabinets.                   |
|    |              |                         | Transformer load is operating at normal level.            |
| 2  | Power factor | 0.91 – 0.94             | Ensure the requirements of Electricity (power factor cosp |
|    | cosφ         | 0.91 – 0.9 <del>4</del> | not less than 0.9) according to Circular 25/2016-TT BCT.  |

Transformers operate at an average load of 17.45%, which is low. Transformers are typically most efficient at 50-75% load, so operating at 17.45% leads to higher losses relative to energy transferred. Review load allocation among transformers to potentially operate closer to optimal efficiency curves. For long-term savings, evaluate energy-efficient transformer options or automated switching systems that match load demand. Power factor (0.91-0.94) meets regulatory requirements (>0.9).

#### 5.1.2 Heating furnace system

Table 5.3: Kiln system, furnace, drying equipment

| No | Name, type            | Fuel type   | Design<br>capacity<br>(ton/hour) | Fuel and energy<br>consumption<br>(kg,kWh/ton<br>product) | Exhaust<br>temperature<br>(°C) | Average operating hours (hours/day) |
|----|-----------------------|-------------|----------------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------------|
| 1  | Pre-<br>Reformer      | NG          | 13,622                           | 0.243                                                     | 165                            | 24                                  |
| 2  | Combustion<br>Chamber | NG          | 196,449                          | 0.109                                                     | N/A                            | 24                                  |
| 3  | E08202                | Electricity | 272                              | 4                                                         | 48                             | 24                                  |

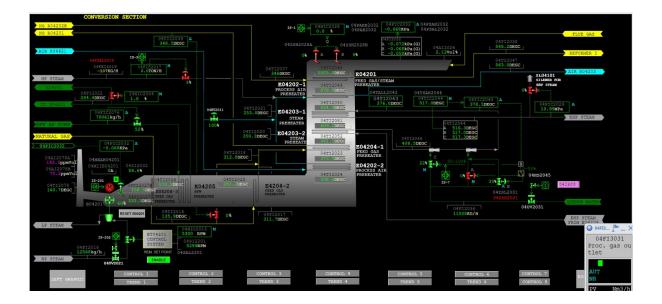



Figure 5.1. Pre-reformer exhaust gas system

There is exhaust flue gas from the pre-reformer furnace with a temperature of about 160°C and a flow rate of approximately 200,000 m³/h, indicating a significant heat recovery potential. However, due to the lack of space for increasing the size of heat exchangers or installing new ones for heat recovery, this option needs to be reconsidered in the future.

#### 5.1.3 Boiler system

Table 5.4: Boiler system

| No | Boiler type      | Fuel<br>type | Design<br>capacity<br>(ton/hour) | Working<br>pressure (barg) | Exhaust<br>temperature<br>(oC) | Average<br>operating<br>hours<br>(hours/day) |
|----|------------------|--------------|----------------------------------|----------------------------|--------------------------------|----------------------------------------------|
| 1  | Auxiliary boiler | NG           | 200                              | 39                         | 120                            | 24                                           |

| 2 | Waste heat boiler | Waste | 250 | 110 | - | 24 |
|---|-------------------|-------|-----|-----|---|----|
|   |                   | heat  |     |     |   |    |

The steam network system at the Plant is supplied from 2 sources:

- Auxiliary Boiler, burning Natural gas to generate high pressure steam, current capacity at the Plant is 50 - 60 tons/hour.

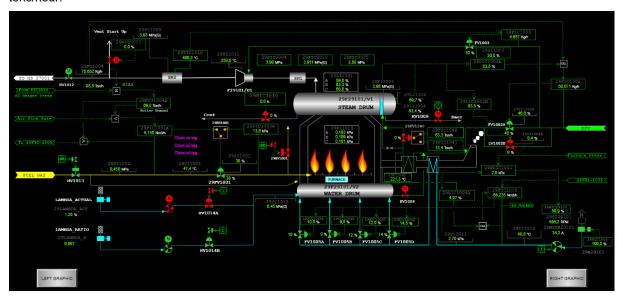



Figure 5.2. Auxiliary boiler graphic image

- Excess heat boiler, recovers heat from NH3 production process to generate super high pressure steam (110 barg, 520°C) to supply 2 Turbines: KT04431 drives synthetic gas compressor (160 tons/h) and KT04441 drives ammo compressor (90 tons/h).

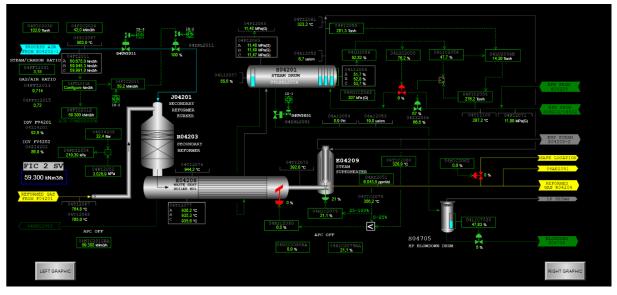



Figure 5.3.Amo workshop waste heat boiler graphic image



Figure 5.4.Image of auxiliary boiler area

Flue gas from the furnace after heating the feed water will be discharged into the environment after passing through the inlet air heater and exhaust flue gas treatment equipment. Exhaust temperature of 120°C, the excess air coefficient is quite high around 4%, and the furnace trips when %O<sub>2</sub> is less than 1.5%. The high excess air coefficient is due to the current low load of the auxiliary boiler (~25% of full load) and the flexible application of turbine/motor switching.

There is potential to use biomass for the auxiliary boiler as a replacement for natural gas (NG). However, this option could impact plant operations and requires further research. Therefore, it is not a priority at this time.

## 5.2 Main equipment lists

### 5.2.1 Refrigeration and air conditioning systems

The Plant's cooling system includes a Plant-level air conditioning system and a chiller system that supplies cold water to technological machines. The Plant cooling system includes a central air conditioning system and a local air conditioning system. Both systems have the task of providing fresh air and air conditioning to the Plant areas, ensuring temperature and humidity for the warehouse area.

The chiller system supplies cold water to the technological machine and is responsible for cooling the technological machine system in the production line.

Table 5.5: Catalog of refrigeration and air conditioning systems

| No      | Brand    | Cooling capacity (Hp) | Quantity | Average operating time (hours/day) |
|---------|----------|-----------------------|----------|------------------------------------|
| 1 Midea |          | 3                     | 19       | 8                                  |
|         | Midoo    | 5                     | 16       | 8                                  |
| '       | Midea    | 1.5                   | 7        | 8                                  |
|         |          | 5.5                   | 2        | 8                                  |
| 2       | Samikura | 3                     | 1        | 24                                 |
| _       | Saminura | 5                     | 3        | 24                                 |

| NI. |            | 0                     | 0        | Average operating time |  |  |  |
|-----|------------|-----------------------|----------|------------------------|--|--|--|
| No  | Brand      | Cooling capacity (Hp) | Quantity | (hours/day)            |  |  |  |
|     |            | 2.5                   | 1        | 24                     |  |  |  |
|     |            | 2                     | 1        | 24                     |  |  |  |
| 3   | Gree       | 3                     | 6        | 24                     |  |  |  |
| 3   | Gree       | 4                     | 2        | 24                     |  |  |  |
|     |            | 1.5                   | 6        | 24                     |  |  |  |
| 4   | Yatai      | 5                     | 6        | 12                     |  |  |  |
| 5   | Bartec     | 2.5                   | 2        | 8                      |  |  |  |
|     |            | 1.5                   | 11       | 8                      |  |  |  |
|     |            | 2                     | 16       | 8                      |  |  |  |
|     |            | 3                     | 11       | 8                      |  |  |  |
| 6   | Daikin     | 4                     | 2        | 8                      |  |  |  |
|     |            | 5                     | 14       | 8                      |  |  |  |
|     |            | 13                    | 1        | 24                     |  |  |  |
|     |            | 5.5                   | 11       | 8                      |  |  |  |
| 7   | Rittal     | 1.5                   | 8        | 24                     |  |  |  |
| 8   | Hitachi    | 1.5                   | 1        | 24                     |  |  |  |
| 9   | Kangning   | 12                    | 3        | 24                     |  |  |  |
| 10  | LG         | 2                     | 2        | 24                     |  |  |  |
| 11  | Mitsubishi | 1.5                   | 4        | 8                      |  |  |  |
| 12  | Reteech    | 1.5                   | 8        | 8                      |  |  |  |
| 13  | X60001A/B  | 268                   | 2        | 24                     |  |  |  |
| 14  | X54001     | 77.8                  | 1        | 24                     |  |  |  |
| 15  | X55003     | 310                   | 1        | 24                     |  |  |  |

## 5.2.2 Compressor system

The pneumatic system – control air includes 6 Atlas Copco air compressors with a capacity of 200 kW, the set pressure of the air compressors is 8.9 - 9.3 bar. Currently being adjusted and divided into loads according to the IS8 system to ensure sufficient pressure when controlling.

In addition, the Plant also uses air compressors, synthetic gas compressors, Ammonia compressors, CO2 compressors... in the Ammonia Workshop and Urea Workshop areas.

Table 5.6: Technical specifications of the compressors

| No                 |                              |   | Rated power (kW) | Working compression pressure (bar) | Operating<br>time<br>(hours/day) |  |  |  |
|--------------------|------------------------------|---|------------------|------------------------------------|----------------------------------|--|--|--|
| Auxiliary workshop |                              |   |                  |                                    |                                  |  |  |  |
| 1                  | Air Compressor K31001A~F     | 6 | 200              | 9                                  | -                                |  |  |  |
| 2                  | Ammonia Compressor K40401A/B | 2 | 141.5            | 18.01                              | 24                               |  |  |  |
| Ammonia Workshop   |                              |   |                  |                                    |                                  |  |  |  |
| 1                  | Air Compressor K04421        | 1 | 9,738            | 32.6                               | 24                               |  |  |  |

| 2    | K04431 Synthetic Air Compressor   | 1 | 16,629 | 130.7 - 138.3 | 24 |
|------|-----------------------------------|---|--------|---------------|----|
| 3    | Ammonia Compressor K04441         | 1 | 6,176  | 18            | 24 |
| 4    | Ammonia Booster Compressor K04451 | 1 | 500    | 200           | -  |
| 5    | Compressor K04204                 | 1 | 75     | 40            | -  |
| 6    | CO2 recovery compressor K04301    | 1 | 630    | 29            | -  |
| Urea | Workshop                          | 1 | -      | •             | •  |
| 1    | CO2 Compressor K06101             | 1 | 11.04  | 157           | 24 |
| 2    | Air Compressor K06102A/B          | 2 | 37     | 160           | 24 |

## 5.2.3 Fan system

The Plant's fan system includes:

- Exhaust fan system;
- Fan system;
- Cooling fan system.

Table 5.7: fan system list and operating time

|    |                          |         |          | Design and    | Operating |
|----|--------------------------|---------|----------|---------------|-----------|
| No | Device Name              | Symbol  | Quantity | installed     | time      |
|    |                          |         |          | capacity (kW) | (h/day)   |
| 1  | FORCED FAN FOR           | B07601  | 1        | 315           | 24        |
| 2  | FORCED FAN FOR           | B07602  | 1        | 1.6           | 24        |
| 3  | FAN DUST SCRUBBER        | B07603  | 1        | 1.8           | 24        |
| 4  | FAN FOR PRODUCT COOLER   | B07605  | 1        | 450           | 24        |
| 5  | FLUE GAS BLOWER          | B04201  | 1        | 1             | 24        |
| 6  | FORCED DRAFT FAN         | B29101  | 1        | 900           | 24        |
| 7  | BLOWER IN CIRCUIT        | K04203  | 1        | 250           | -         |
| 8  | Dust collection blower   | MB07604 | 1        | 37            | 24        |
| 9  | COOLING TOWER            | ME21101 | 8        | 200           | 24        |
| 10 | Granulator Fan           | B08101  | 1        | 75            | 24        |
| 11 | COMBUSTION AIR FAN       | B08102  | 1        | 30            | 24        |
| 12 | COOLER DRUM FAN          | B08104  | 1        | 110           | 24        |
| 13 | DRYER FAN                | B08105  | 1        | 420           | 24        |
| 14 | DEDUST FAN               | B08106  | 1        | 132           | 24        |
| 15 | FBC OUTLET FAN           | B08107  | 1        | 110           | 24        |
| 16 | FBC INLET FAN            | B08108  | 1        | 110           | 24        |
| 17 | FBC RECIRCULATION FAN    | B08109  | 1        | 110           | 24        |
| 18 | DEDUSTING AIR HEATER FAN | B08110  | 1        | 22            | 24        |
| 19 | COOLER DRUM OUTLET FAN   | B08111  | 1        | 315           | 24        |
| 20 | DUST REMOVAL FAN         | B08201  | 1        | 37            | 24        |
| 21 | DUST REMOVAL FAN I       | B08001  | 1        | 37            | 24        |
| 22 | DUST REMOVAL FAN II      | B08002  | 1        | 11            | 24        |
| 23 | DUST REMOVAL FAN III     | B08003  | 1        | 11            | 24        |
| 24 | DUST REMOVAL FAN IV      | B08004  | 1        | 22            | 24        |

| No | Device Name                         | Symbol  | Quantity | Design and installed capacity (kW) | Operating<br>time<br>(h/day) |
|----|-------------------------------------|---------|----------|------------------------------------|------------------------------|
| 25 | MIXED BLOWER FOR NEUTRALIZATION PIT | MB20202 | 2        | 37                                 | interruption                 |
| 26 | DUMP CONDENSER                      | ME29201 | 6        | 11                                 | interruption                 |

## 5.2.4 Pumping system

The pumping system of the Plant accounts for a high proportion of energy use, including: Cooling water pumping system and pumping system for the production process.

Table 5.8: List of pump systems of the Plant

| No | Device                                                         | Device<br>symbol | Quantity | Design<br>capacity<br>(kW) | Actual flow (m3/h) | Average operating time (hours/day) | Area            |
|----|----------------------------------------------------------------|------------------|----------|----------------------------|--------------------|------------------------------------|-----------------|
| 1  | Semilean Solution<br>Pump                                      | P04301           | 2        | 3.3                        | 2450 t/h           | 24                                 | Amo<br>Workshop |
| 2  | Lean Solution<br>Pump                                          | P04302           | 2        | 700                        | 460 t/h            | 24                                 | Amo<br>Workshop |
| 3  | HP BFW PUMPS (Pump A driven by Turbine, Pump B driven by Motor | P29201           | 2        | 1870                       | 272000 t/h         | 24                                 | Amo<br>Workshop |
| 4  | Hp Circulation Pump                                            | P04551           | 4        | 37                         | 3342 t/h           | 24                                 | Amo<br>Workshop |
| 5  | Lp Circulation Pump                                            | P04552           | 2        | 22                         | 1089 t/h           | 24                                 | Amo<br>Workshop |
| 6  | Main Oil Pump<br>For K04421                                    | P04422           | 2        | 55                         | 60                 | 24                                 | Amo<br>Workshop |
| 7  | LO Main Pump for<br>K04431                                     | P04431           | 2        | 75                         | 83                 | 24                                 | Amo<br>Workshop |
| 8  | Ammonia Compressor Lube Oil Pump                               | P04441           | 2        | 30                         | 30                 | 24                                 | Amo<br>Workshop |
| 9  | Split Stream Pump                                              | P04303           | 2        | 75                         | 490.1 t/h          | 24                                 | Amo<br>Workshop |
| 10 | Process Condensate Pump No 1                                   | P04305           | 2        | 75                         | 58.5 t/h           | 24                                 | Amo<br>Workshop |
| 11 | Condensate<br>Water Pump                                       | P04401           | 2        | 75                         | 90                 | 24                                 | Amo<br>Workshop |

| No | Device                           | Device<br>symbol | Quantity | Design<br>capacity<br>(kW) | Actual flow (m3/h) | Average operating time (hours/day) | Area             |
|----|----------------------------------|------------------|----------|----------------------------|--------------------|------------------------------------|------------------|
| 12 | Solution Drain<br>Pump           | P04307           | 1        | 18.5                       | 50                 | -                                  | Amo<br>Workshop  |
| 13 | Solution Transfer<br>Pump        | P04308           | 1        | 18.5                       | 50                 | -                                  | Amo<br>Workshop  |
| 14 | Ammonia Product<br>Pump          | P04501           | 2        | 55                         | 99                 | -                                  | Amo<br>Workshop  |
| 15 | Ammonia Drain<br>Pump            | P04504           | 1        | 11                         | 10                 | -                                  | Amo<br>Workshop  |
| 16 | Emergency Oil<br>Pump For K04421 | P04421           | 1        | 15                         | 20                 | -                                  | Amo<br>Workshop  |
| 17 | Liquid NH3                       | P06101           | 2        | 1.8                        | 140                | 24                                 | Urea<br>Workshop |
| 18 | Carbamate<br>Translation         | P06102           | 2        | 800                        | 87                 | 24                                 | Urea<br>Workshop |
| 19 | Urea Solution<br>45%             | P07602           | 2        | 220                        | 1400               | 24                                 | Urea<br>Workshop |
| 20 | Carbamate<br>Translation         | P06103           | 2        | 75                         | 28                 | 24                                 | Urea<br>Workshop |
| 21 | Liquid NH3                       | P06105           | 2        | 75                         | 140                | 24                                 | Urea<br>Workshop |
| 22 | Urea 83%<br>Solution             | P06106           | 2        | 30                         | 97                 | 24                                 | Urea<br>Workshop |
| 23 | Urea 96%<br>Solution             | P06108           | 2        | 75                         | 90                 | 24                                 | Urea<br>Workshop |
| 24 | Condensate                       | P06110           | 2        | 55                         | 7                  | 24                                 | Urea<br>Workshop |
| 25 | Condensate                       | P06113           | 2        | 30                         | 57                 | 24                                 | Urea<br>Workshop |
| 26 | Process condensate water         | P06114           | 2        | 37                         | 48                 | 24                                 | Urea<br>Workshop |
| 27 | Process condensate water         | P06115           | 2        | 200                        | 58                 | 24                                 | Urea<br>Workshop |
| 28 | Condensate                       | P06204           | 2        | 55                         | 25                 | 24                                 | Urea<br>Workshop |
| 29 | Condensate                       | P06206           | 2        | 75                         | 20                 | 24                                 | Urea<br>Workshop |
| 30 | Condensate<br>turbine            | P06118           | 2        | 37                         | 40                 | 24                                 | Urea<br>Workshop |
| 31 | CO2 compressor oil               | P06201           | 2        | 55                         | 975 l/h            | 24                                 | Urea<br>Workshop |

| No | Device                        | Device<br>symbol | Quantity | Design<br>capacity<br>(kW) | Actual flow (m3/h) | Average operating time (hours/day) | Area                  |
|----|-------------------------------|------------------|----------|----------------------------|--------------------|------------------------------------|-----------------------|
| 32 | COOLING<br>WATER PUMP         | P21101           | 3        | 2000                       | -                  | 24                                 | Auxiliary<br>Workshop |
| 33 | FRESH WATER<br>PUMP           | P21201           | 2        | 1400                       | _                  | 24                                 | Auxiliary<br>Workshop |
| 34 | No.1 RAW<br>WATER PUMP        | P20101           | 2        | 30                         | 100                | 24                                 | Auxiliary<br>Workshop |
| 35 | No.2 RAW<br>WATER PUMP        | P20102           | 2        | 110                        | _                  | _                                  | Auxiliary<br>Workshop |
| 36 | FILTERED<br>WATER PUMP        | P20201           | 3        | 37                         | 150                | 24                                 | Auxiliary<br>Workshop |
| 37 | BACK-WASH<br>PUMP FOR ACF     | P20202           | 2        | 45                         | 170                | 24                                 | Auxiliary<br>Workshop |
| 38 | DEGASIFIER<br>PUMP            | P20203           | 3        | 30                         | 150                | 24                                 | Auxiliary<br>Workshop |
| 39 | DEMINERALIZED<br>WATER PUMP   | P20206           | 3        | 75                         | 161                | 24                                 | Auxiliary<br>Workshop |
| 40 | DEIONIZED<br>WATER PUMP       | P20204           | 2        | 55                         | 340                | 24                                 | Auxiliary<br>Workshop |
| 41 | NEUTRALIZED<br>WATER PUMP     | P20210           | 2        | 15                         | -                  | Interruption                       | Auxiliary<br>Workshop |
| 42 | CONDENSATE PUMP FOR P21101A   | P21102           | 2        | 30                         | -                  | 24                                 | Auxiliary<br>Workshop |
| 43 | DISSOLVED AIR FLOATATION PUMP | P27014           | 2        | 15                         | -                  | Interruption                       | Auxiliary<br>Workshop |
| 44 | AMMONIA<br>TRANSFER<br>PUMP   | P40001           | 2        | 132                        | -                  | Interruption                       | Auxiliary<br>Workshop |
| 45 | AMMONIA<br>CRACKING<br>PUMP   | P40002           | 1        | 22                         | -                  | Interruption                       | Auxiliary<br>Workshop |
| 46 | INTAKE WATER PUMP MOTOR       | P97001           | 3        | 160                        | 950                | 24                                 | Auxiliary<br>Workshop |
| 47 | MP BFW PUMPS                  | P29202           | 2        | 560                        | 50                 | 24                                 | Auxiliary<br>Workshop |
| 48 | POTABLE<br>WATER PUMP         | P20103           | 2        | 11                         | 13                 | -                                  | Auxiliary<br>Workshop |
| 49 | CONDENSATE<br>PUMPS           | P29203           | 2        | 11                         | -                  | 24                                 | Auxiliary<br>Workshop |

| No | Device        | Device<br>symbol | Quantity | Design<br>capacity<br>(kW) | Actual flow<br>(m3/h) | Average operating time (hours/day) | Area            |
|----|---------------|------------------|----------|----------------------------|-----------------------|------------------------------------|-----------------|
| 50 | Scrubber Pump | P08103           | 2        | 132                        | 687                   | 24                                 | NPK<br>Workshop |

The facility currently operates a large number of pumps and fans, where capacity is controlled using valves and dampers, resulting in significant operational losses:

- Cooling water pumps
- Feed water pumps
- Fans in the granulation system
- Ammonia pumps

For the cooling water pump system, PVFC has already optimized operations by reducing one pump in the river water system and one pump in the freshwater system.

Additionally, it has been observed that large manual valves are installed in multiple locations within the utility systems to regulate flow capacity. Specifically, the following dampers are partially closed: B07602 and B07603 (70%), B07605 (60%), and B07601 (50%). The plant has already planned to install a Variable Speed Drive (VSD) for B07602 to reduce energy consumption. It is recommended that VSDs also be considered for B07603 and B07605 to enhance energy efficiency.

### 5.3 Overall energy mapping

The energy used in the Plant mainly includes natural gas and electricity. The energy consumption rate in the Plant per year is shown in the following chart:

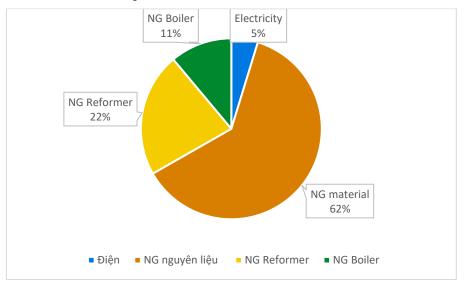
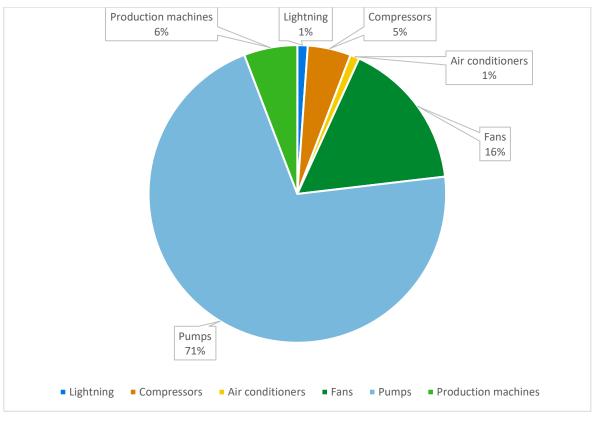




Figure 5.5. Energy usage rate in 2023

It can be seen that NG accounts for 95% of the energy used in the Plant, electricity accounts for only 5%. The high proportion of NG is because NG is used as raw material to produce NH3, fuel for reformer and auxiliary boiler.

Natural gas fuel is mainly used for NH3 production plant and auxiliary boiler, the electricity usage ratio for the areas is shown in the chart below:



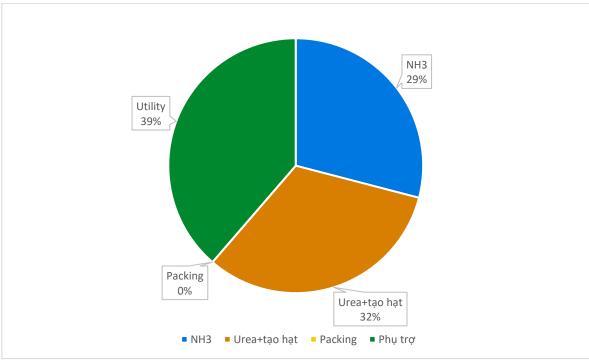



Figure 5.6. Electricity usage rate in 2023

From the chart, we can see that 39% of electricity is used in the auxiliary workshop to serve the cooling water pumping system, compressed air system, refrigeration and air conditioning system..., of which 70% serves the NH3 production workshop and 30% serves the Urea production workshop. The main electricity consumption of the plant is the pump system.

The majority of the energy used in the plant is in the form of heat. During the discussions with ICs and the key-staff at the facility, the following assessments focus on rehabilitation of cooling water systems and utilization of waste heat and delta-T-hunting. So that all cooling consumers at the facility are identified with level-2 energy mapping, i.e. all heat exchangers where cooling water is used are identified and load and temperatures for each of these are mapped on the primary and secondary side.

### 5.4 Level-2 heat exchanger mapping

It can be observed that large temperature differences between the source and the sink of heating or cooling, so a level-2 mapping is performed where any thermal energy demand (heating and cooling) is mapped by energy demand and temperatures. The purpose of this is to identify potential energy savings potentials through modification of processes or the energy supply systems.

It is important to understand that such large differences in delta-T, ie differences in process demand-temperature and delivered utility-temperature, can represent significant energy saving potentials.

### 5.4.1 AMO section

Table 5.9.Level-2-mapping for AMO section

| No. | Name     | Func.                       | Capacity<br>(KW) | 1 Tin | 1Tout | 2 Tin  | 2 Tout |
|-----|----------|-----------------------------|------------------|-------|-------|--------|--------|
| 1   | E04217   | FEED&FUEL PREHEATER         | 520              | 30    | 51.1  | 91.8   | 81.2   |
| 2   | E04204-3 | FEED GAS PREHEATER          | 1,670            | 51.1  | 135.8 | 173.5  | 158.5  |
| 3   | E04204-2 | FEED GAS PREHEATER          | 3,510            | 135.8 | 312.2 | 338.6  | 293.2  |
| 4   | E04204-1 | FEED GAS PREHEATER          | 1,550            | 312.2 | 348.7 | 381.5  | 373.4  |
| 5   | E04201   | FEED GAS&STEAM<br>PREHEATER | 17,480           | 346   | 546.2 | 1023.8 | 869.9  |
| 6   | E04202-2 | PROCESS AIR PREHEATER       | 3,060            | 164   | 350.2 | 373.3  | 338.2  |
| 7   | E04202-1 | PROCESS AIR PREHEATER       | 4,700            | 252.7 | 562   | 869.8  | 834.9  |
| 8   | E04208   | WASTE HEAT BOILER No.1      | 62,270           | 935.8 | 387.5 | 287.2  | 322    |
| 9   | E04209   | STEAM SUPER HEATER          | 7,570            | 387.5 | 346.3 | 322    | 329.1  |
| 10  | E04210   | WASTE HEAT BOILER No.2      | 10,539           | 420.9 | 329.9 | 286.1  | 323.3  |
| 11  | E04211   | TRIM HEATER                 | 850              | 420.9 | 291.6 |        |        |

| No. | Name           | Func.                            | Capacity<br>(KW) | 1 Tin | 1Tout | 2 Tin | 2 Tout |
|-----|----------------|----------------------------------|------------------|-------|-------|-------|--------|
| 12  | E04212A/B      | BFW PREHEATER No.1               | 15,181           | 329.8 | 196.9 | 167   | 276.6  |
| 13  | E04212C        | BFW PREHEATER UTILITY            | -                | 329.8 | 190.8 |       | 270    |
| 14  | E04213         | BFW PREHEATER No.2               | 850              | 220.1 | 162   | 132.2 | 167    |
| 15  | E04205         | BFW PREHEATER                    | 11,350           | 293.2 | 173.5 | 132.2 | 284.4  |
| 16  | E04302         | STRIPPER REBOILLER               | 20,740           | 162   | 127.8 |       |        |
| 17  | E04305         | DMW PREHEAT NO.2                 | 17,870           | 127.8 | 116   |       |        |
| 18  | E04316         | GAS COOLER                       | -                | 116   | 69    | 34.5  | 43.3   |
| 19  | E04311A/B      | GAS/GAS HE                       | 850              | 50.8  | 288.1 | 315.9 | 77     |
| 20  | E04211         | TRIM HEATER                      | 850              | 288.1 | 290   | 420.9 | 291.6  |
| 21  | E04311A/B      | GAS/GAS HE                       | 850              | 315.9 | 77    | 50.8  | 288.1  |
| 22  | E04312         | 12 FINAL COOLER                  |                  | 77    | 40.9  | 34.5  | 43.3   |
| 23  | E04330         | 330 FLASH GAS COOLER             |                  | 88.9  |       | 34.5  | 43.3   |
| 24  | E04306         | LP CO2 FLASH GAS COOLER          | 4,610            | 75.7  | 43.3  | 34.5  | 43.3   |
| 25  | E04301/315/318 | SOLUTION HE                      | 16,570           | 81    | 102.8 | 117.6 | 93.8   |
| 26  | E04304/13      | DEMI WATER PREHEATER<br>NO.1     | 5,250            | 93.8  | 76    | 54.6  | 76     |
| 27  | E04303         | LEAN SOLUTION COOLER             | 11,630           | 76    | 50.4  | 34.5  | 43.3   |
| 28  | E04701A/B      | P. CONDENDATE FEED HE            | 9,290            | 69    | 222.9 | 246.5 | 91.8   |
| 29  | E04701A/B      | A/B P. CONDENDATE FEED HE        |                  | 246.5 | 91.8  |       |        |
| 30  | E04217         | FEED&FUEL PREHEATER              | 520              | 91.8  | 81.2  |       | 51.1   |
| 31  | E04702         | STRIPPED P. CONDENSATE<br>COOLER | 2,080            | 81.2  | 38.1  | 34.5  | 43.3   |
| 32  | E04431         | COMPRESSED S. GAS<br>COOLER 1    | 4,306            | 99.4  | 41.7  | 34.5  | 43.3   |

| No. | Name   | Func.                         | Capacity<br>(KW) | 1 Tin | 1Tout | 2 Tin | 2 Tout |
|-----|--------|-------------------------------|------------------|-------|-------|-------|--------|
| 33  | E04432 | COMPRESSED S. GAS<br>COOLER 2 | 4,000            | 100.4 | 50    | 34.5  | 43.3   |
| 34  | E04433 | COMPRESSED S. GAS<br>COOLER 3 | 7,719            | 157.6 | 37.4  | 34.5  | 43.3   |
| 35  | E04441 | C. AMO COOLER                 | 886              | 76    | 25.3  | 34.5  | 43.3   |
| 36  | E04510 | AMO CHILLER CONDENSER         | 28,650           | 102.4 | 40.6  | 34.5  | 43.3   |
| 37  | E04221 | C. AIR COOLER 1               | -                | 124.8 | 36.5  | 34.5  | 43.3   |
| 38  | E04222 | C. AIR COOLER 2               | -                | 122.3 | 37.2  | 34.5  | 43.3   |
| 39  | E04223 | C. AIR COOLER 3               | -                | 131.2 | 39.6  | 34.5  | 43.3   |
| 40  | E04224 | C. AIR COOLER 4               | -                | 138.1 | 83.8  | 34.5  | 43.3   |
| 41  | E04509 | E04509 MAKE-UP GAS CHILLER    |                  | 37.5  | 17.7  | 14.9  |        |
| 42  | E04508 | 2ND AMONIA CHILLER            | 8,861            | 17.7  | -7.5  | -11.6 |        |
| 43  |        |                               | -                | 9.4   | -7.5  | -11.6 |        |
| 44  | E04507 | 2ND COLD EXCHANGER            | 5,811            | -7.5  | 15    | 18.7  | 9.4    |
| 45  | E04505 | 1ST COLD EXCHANGER            | 5,180            | 15    | 36.4  | 40    | 33.2   |
| 46  | E04503 | HOT HEAT EXCHANGER            | 54,220           | 46.1  | 246   | 280.7 | 73.7   |
| 47  | E04501 | LOOP WASTE HEAT BOILLER       | 25,930           | 445   | 353.4 |       |        |
| 48  | E04502 | LOOP BFW PREHEATER            | 14,080           | 353.4 | 280.8 | 167.3 | 295.6  |
| 49  | E04503 | HOT HEAT EXCHANGER            | 54,220           | 280.8 | 73.7  |       |        |
| 50  | E04504 | 504 WATER COOLER              |                  | 73.7  | 40    | 34.5  | 43.3   |
| 51  | E04505 | 1ST COLD EXCHANGER            | 5,180            | 40    | 33.2  | 15    | 36.4   |
| 52  | E04506 | 1ST AMONIA CHILLER            | 10,020           | 33.2  | 18.7  |       |        |
| 53  | E04507 | 2ND COLD EXCHANGER            | 5,811            | 18.7  | 9.4   | -7.5  | 15     |
| 54  | E04514 | PURGE GAS CHILLER             | 369              | 9.4   | -8.4  |       |        |

A number of heat exchangers have significant delta-Ts (exergy loss), especially no.5 E04201 (FEED GAS&STEAM PREHEATER), and no.9 E04209 (STEAM SUPER HEATER). Heat exchangers no. 5 (E04201) and no.9 (E04202) are used to pre-heat materials (NG, steam, air) before going to the reforming reactor using flue gas. The HEs are working in serial and are designed for a high heat transfer rate (so high delta T).

E04503 (~195 GJ/h) has high delta-T that can be improved to recover heat and reduce cooling load at E04504.

To illustrate energy saving potentials, a temperature vs. load-curve is established. The figure shows all heating demands (red) and cooling demands (blue) in a facility integrated into 2 curves by temperature and load. Overlaps in temperatures can be illustrated in such a figure – in this case indicating a significant potential to recover heat and thus save hot and cold utility.

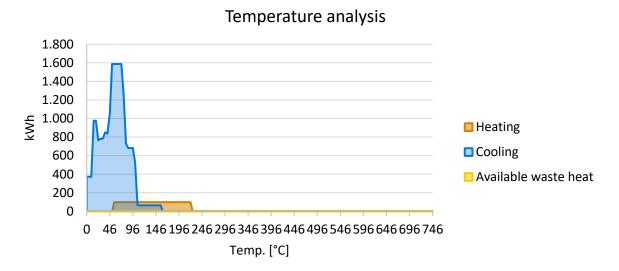



Figure 5.7.Temperature/load-curves for cooling demand (blue) and heating demand (red) for AMO section

Based on the temperature analysis, it can be seen that a significant amount of waste heat—ranging from 50°C to 150°C—is being discharged into the cooling system, indicating strong potential for heat recovery. In particular:

- E04510 AMO Chiller Condenser: Capacity: 28,650 kW; Operating Temperature: 102.4°C
- E04433 Compressed S. Gas Cooler 3: Capacity: 7,719 kW; Operating Temperature: 157.6°C
- E04221-E04224 C. Air Cooler: Operating Temperature: 124.8°C

The AMO section efficiently meets most of its heating requirements through the recovery of heat from the reform reactors. A key external demand arises from the process condensate stripper, which utilizes high-pressure steam at 3.63 MPa. In this crucial process, the condensate is heated to a range of 220-240°C.

The analysis above indicates that there is not much potential to directly utilize excess heat from the cooling system for the AMO workshop. However, this excess heat can be transferred via high-pressure hot water to the NPK workshop, where there is a relatively high demand for heat to dry products at approximately 100°C. To implement this, additional heat exchangers and pipelines will be required to transport the waste heat to the consumption site.

These waste heat sources could be harnessed either to generate electricity using an Organic Rankine Cycle (ORC) or to produce chilled water via an absorption chiller.

Electricity Generation Using an Organic Rankine Cycle (ORC) systems convert low- to medium-temperature heat into electrical energy by using an organic fluid with a lower boiling point than water. This solution reduces reliance on external grid power and lowers energy costs by turning waste heat into a productive asset.

Absorption chillers use thermal energy (rather than electrical energy) to drive a refrigeration cycle, producing chilled water for process or space cooling. It will enhance cooling efficiency by using heat that would otherwise be wasted and supports integrated energy management by coupling heat recovery with cooling needs.

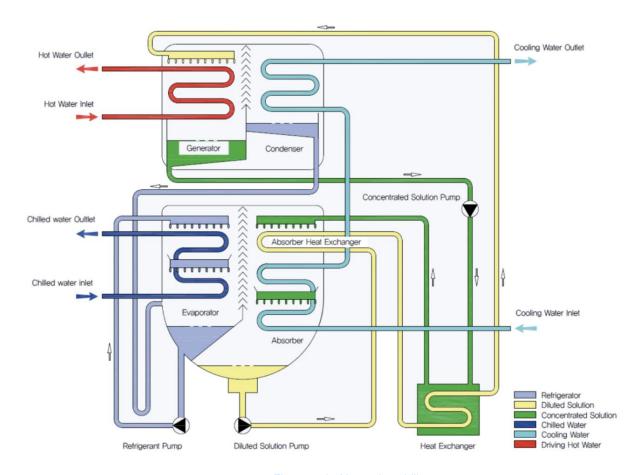



Figure 5.8. Absorption chiller.

### 5.4.2 URE section

Table 5.10.Level-2-mapping for URE section

| No. | Name     | Funtion                                                                      | Capacity<br>(KW) | 1 Tin | 1Tout | 2 Tin | 2 Tout |
|-----|----------|------------------------------------------------------------------------------|------------------|-------|-------|-------|--------|
| 1   | E06101   | High Pressure Decomposition Equipment                                        | 34,161           | 189.3 | 192.9 |       |        |
| 2   | E06102 A | Medium Pressure Decomposition<br>Equipment (installed with<br>S06102/T06122) | 11,533           | 216.1 | 189   |       |        |

| No. | Name          | Funtion                                                             | Capacity<br>(KW) | 1 Tin | 1Tout | 2 Tin | 2 Tout |
|-----|---------------|---------------------------------------------------------------------|------------------|-------|-------|-------|--------|
| 3   | E06102B       | Medium Pressure Decomposition<br>Equipment                          | 4,017            | 189   | 161.3 | 216   |        |
| 4   | E06103        | Low Pressure Decomposition Equipment (installed with S06103/T06103) | 5,706            | 161.3 | 151.1 |       |        |
| 5   | E06104        | Vacuum Pre-Concentrator (installed with S06104/T06124)              | 13,358           | 161.3 | 139.2 |       |        |
| 6   | E06105 A      | First Carbamate Condenser                                           | 33,825           | 216.1 | 174.9 |       |        |
| 7   | E06105B       | Second Carbamate Condenser                                          | 8,656            | 174.9 | 145.3 |       |        |
| 8   | E06106        | Medium Pressure Condenser                                           | 15,903           | 139.2 | 81.9  | 39.6  | 68.9   |
| 9   | E06107        | Ammonia Pre-heater                                                  | 6,100            | 127.9 | 97.6  | 25    | 94.5   |
| 10  | E06108        | Low Pressure Condenser                                              | 10,586           | 97.6  | 35.6  | 34.5  | 43.3   |
| 11  | E06109        | Ammonia Condenser                                                   | 9,617            | 79    | 34.8  | 34.5  | 43.3   |
| 12  | E06110        | Condensate Wash Water Cooler                                        | 2,086            | 120   | 34.8  | 34.5  | 43.3   |
| 13  | E06111        | Medium Pressure Ammonia Absorber (installed with C06103)            | 469              | 30    | 50    | 34.5  | 43.3   |
| 14  | E06112        | Low Pressure Ammonia Absorber (installed with T06106&C06104)        | 283              | 40    | 37.8  | 34.5  | 43.3   |
| 15  | E06113        | High Pressure Carbonate Solution Pre-<br>heater                     | 2,511            |       |       | 148.7 | 116.9  |
| 16  | E06114        | Vacuum Evaporator (installed with S06114/T06114)                    | 11,439           | 101.7 | 135.7 |       |        |
| 17  | E06116<br>A/B | Distillation tower preheater                                        | 2,156            | 40.1  | 94.9  | 116.9 | 68.7   |
| 18  | E06118<br>A/B | Hydrolysis tower preheater                                          | 4,667            | 150   | 214.7 | 225.7 | 163.7  |
| 19  | E06119        | CO2 compressor first intercooler (K06101 package)                   | 3,217            | 170.2 | 40.9  | 34.5  | 43.3   |
| 20  | E06120        | CO2 compressor second intercooler (K06101 package)                  | 3,669            | 220.8 | 43.7  | 34.5  | 43.3   |
| 21  | E06121        | CO2 compressor third intercooler (K06101 package)                   | 2,722            | 177   | 47.3  | 34.5  | 43.3   |
| 22  | E06122        | Condensing vapor cooler                                             | 3,869            |       | 104.3 | 34.5  | 43.3   |
| 23  | E06123        | Technological condensate end cooler                                 | 2,078            | 68.7  | 44.4  | 34.5  | 43.3   |
| 24  | E06140        | CO2 compressor turbine condenser                                    | 33,333           |       |       |       |        |
| 25  | E06160        | Circulating urea preheater                                          | 456              | 44.3  | 101.7 | 120   |        |
| 26  | Z061505       | Vacuum system                                                       | -                |       |       | 34.5  | 43.3   |
| 27  | E06124        | PRE CONDENSER                                                       | 37,264           |       |       | 34.5  | 43.3   |
| 28  | E06125        | INTERCONDENSER                                                      | 353              |       |       | 34.5  | 43.3   |
| 29  | E06126        | AFTER CONDENSER                                                     | 403              |       |       | 34.5  | 43.3   |

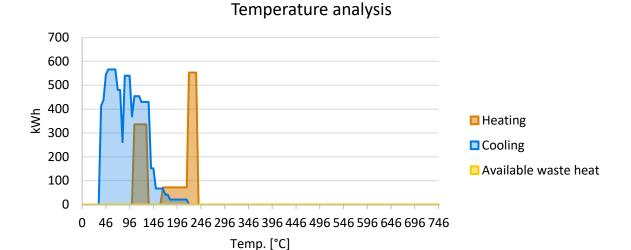



Figure 5.9.Temperature/load-curves for cooling demand (blue) and heating demand (red) for URE section

For URE section, there are several potential heat recovery locations defined using the level-2 mapping above:

- E06119 CO2 compressor first intercooler: Capacity 3,217 kW, temperature in 170.2 °C
- E06120 CO2 compressor second intercooler: Capacity 3,669 kW, temperature in 220.8 °C
- E06121 CO2 compressor third intercooler: Capacity 2,722 kW, temperature in 177 °C.

Main external heating demand arises of URE section from the Carbamate pressure decomposition equipment (E06102 A, E06103), which utilizes high-pressure steam at 3.63 Mpa, working temperatre around 240 °C and Vacuum Evaporator (E06114 - 11.439 kW) using low-presure steam at about 140 °C.

The analysis above indicates that there is opportunity to utilize wates heat from CO2 compressor intercooler (E06119, E06120, E06121) for the Vacuum Evaporator (E06114) to reduce the low-pressure steam consumption.

These waste heat sources also could be harnessed either to generate electricity using an Organic Rankine Cycle (ORC) or to produce chilled water via an absorption chiller.

## 5.5 Water cooling system mapping

### 5.5.1 Water Cooling System Description

The Ca Mau Fertilizer Plant's cooling system consists of an open recirculating Riverwater cooling system (21100) and a closed recirculating freshwater cooling system (21200).

- River water is used to supplement lost water in cooling towers (evaporation and bleed)
- River water is not used directly for cooling purposes
- Circulating cooling tower water for certain process cooling purposes
- The cooling tower water also cools the fresh water loop
- Fresh water circulation for other process cooling purposes

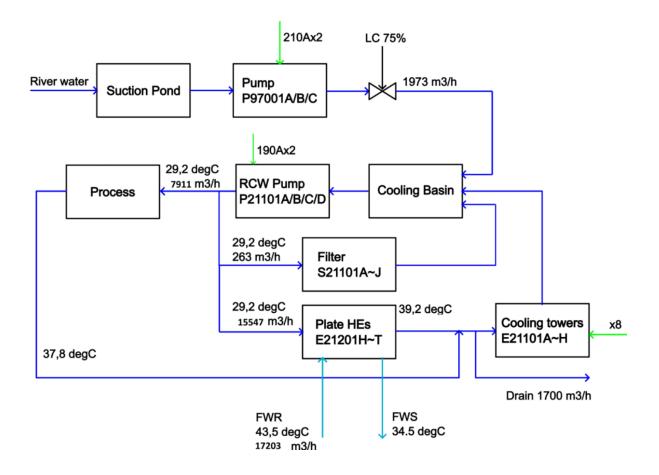



Figure 5.10. Water cooling system

### Riverwater Cooling System

Riverwater (Riverwater Cooling System) is directly used in all turbine condensers of the plant to lower the temperature of all process streams. Additionally, it is employed to cool the freshwater cooling system through plate heat exchangers. A small portion is then discharged. The remaining water is treated by a system of cooling towers E21101A~H. The system is replenished with Riverwater by barrier water pumps P97001A~C.

Basic design information has considered the influence of environmental factors such as:

- Inlet/outlet temperature of Riverwater (°C): 34/43
- Wet bulb temperature (°C): 30

The Riverwater cooling system includes 8 cooling towers (capacity of 4700 m³/h per tower). The Riverwater storage tank can maintain 4 hours of operation in case of loss of water supply.

Cooling water is pumped into the turbine condensers of the Amo and Urea plants and plate heat exchangers (E21201A~J) of the freshwater cooling system. The Riverwater cooling system is circulated by 4 pumps P21101A~D (capacity of 12343 m³/h per pump, one standby), three driven by electric motors, and one by a steam turbine. The pumps are installed near the Riverwater storage tank and provide the required pressure for the plant, approximately 4.2 barg.

To ensure the quality of the cooling water, a portion of the cooling water passes through a side-stream filter (S21101A~F) with a flow rate of approximately 1294 m³/h.

Sulfuric acid is used in the cooling water to maintain pH, and anti-scaling agents are used to prevent scale formation in the system. Javel is added to inhibit the growth of microorganisms.

The water supplied to the Riverwater cooling system is sourced from the Cai Tau River. The normal circulation ratio of the system is 1.25, and the design value is 1.5.

The ion concentration in the water is kept stable, and water quality improves with the number of circulation cycles. Suspended solids in the Riverwater are removed by filters (S21101A~J).

### Freshwater Cooling System

Freshwater is directly used in condensers and heat exchangers, except for turbine condensers in the plant, to reduce the temperature of process streams. It is then cooled down by Riverwater through Riverwater-freshwater heat exchangers E21201A~J. System leakage is replenished with demineralized water.

Basic design information has considered the influence of environmental factors such as:

- Inlet/outlet temperature of Riverwater (°C): 34/43
- Inlet/outlet temperature of freshwater (°C): 37/46

After heat exchange, freshwater is cooled down to the design value using Riverwater through 10 plate heat exchangers (capacity of each is 2050 m³/h).

Freshwater is supplied to consumers by freshwater pumps P21201A/B/C (capacity of each pump is 10838 m³/h, one standby), two driven by electric motors, and one by a turbine. The pumps are installed near the plate heat exchangers and provide water according to the plant's requirements, approximately 5.8-6 barg.

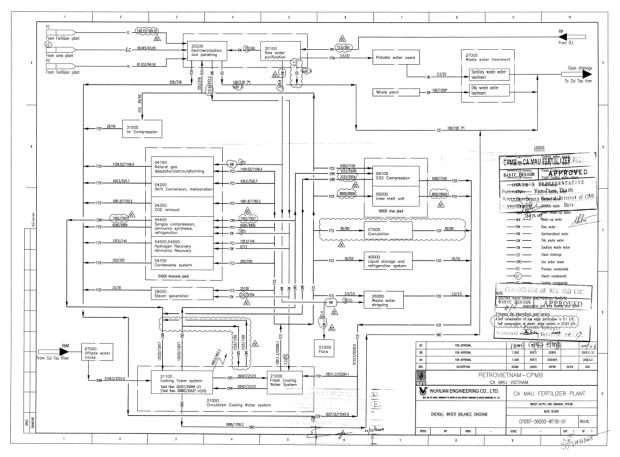



Figure 5.11. Overall cooling water system balance

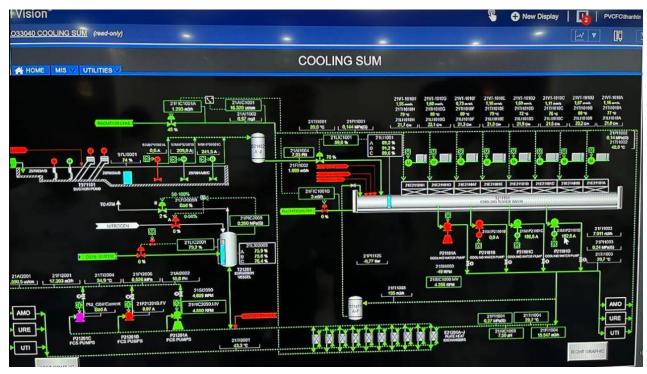



Figure 5.12. Overall cooling water system working data

A delta-T of 5 degrees is relatively high compared to other water-to-water plate heat ex-changers of similar size, where best practice design can be as low as 1 degree. A lower delta-T will improve process cooling all over the facility.

There are opportunities to apply cooling tower water directly for process cooling in some areas in stead of using fresh water cooling. This will make cooling more efficient due to lower feed temperature of cooling tower water and also increase the capacity on E21201H-T (eventually reducing delta-T).

If cooling capacity needs to be increased, it could be considered to use river water directly for certain cooling purposes – this will maybe be cheaper than installing new cooling towers, but any contamina-tion problem and filtration of river water has to be taken into account

PVCFC have already done comprehensive work to optimize cooling tower performance during 2023 and presently operates these close to a theoretical target temperature of the cooling water under the current ambient conditions (temperature and relative humidity).

During the site visit, the following readings were made:

o Ambient conditions during the site visit :

Relative Humidity 65.94%

• Wet bulb temperature : 25.55 deg. C

Dry bulb temperature 31.58 deg. C

o Cooling tower temperature

Inlet Temperature : 40 deg. C

Outlet cold water temperature : 29.7 deg. C

Range: 10.3 deg. C

Approach : 4.15 (about 1-1.5 deg. C gap from best possible approach)

Effectiveness: 71.3 %

As such it appears that the cooling water temperature is fine (can be optimized further), but that the efficiency of the cooling towers are not high enough due to a complicated mix of flows and cooling loads. This can be investigated further.

The actual operating temperatures of the cooling water system during the visit with an ambient temperature of approx. 27°C and a relative humidity of 70%, the cooling towers deliver a feedwater temperature of 29.7C, which is very close to the theoretical limit.

The theoretical limit was during the mission assessed to be 1-1½°C lower than 29.7°C. Such an improvement might be relatively expensive to achieve, and the other options considered in this report might be investigated first.

## 5.5.2 Cooling System Mapping

### River water system (Cooling tower water)

Riverwater (Riverwater Cooling System) is directly used in all turbine condensers (E04401 26%, E06140 10% and E21102 4%, 40% in total) of the. Additionally, it is employed to cool the freshwater cooling system through plate heat exchangers E21201A~J (60%).

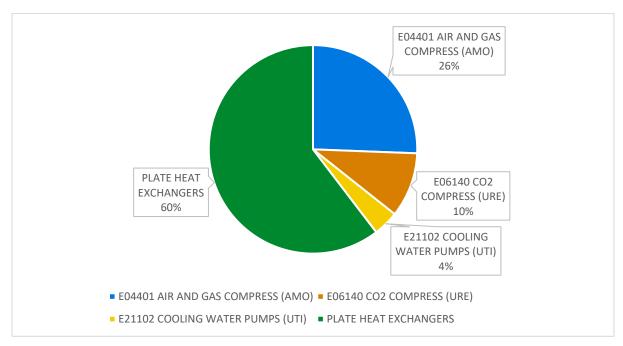



Figure 5.13. River cooling water mapping

### Fresh water system

Freshwater is directly used in condensers and heat exchangers, except for turbine condensers in the plant, to reduce the temperature of process streams. It is then cooled down by Riverwater through Riverwater-freshwater plate heat exchangers E21201A~J.

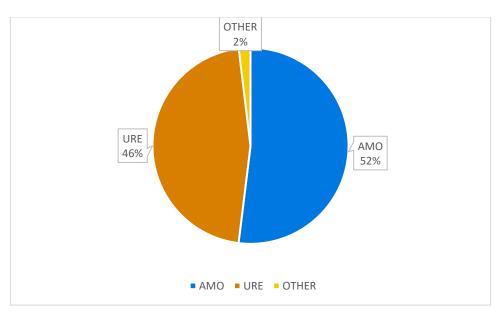



Figure 5.14. Fresh cooling water overall mapping

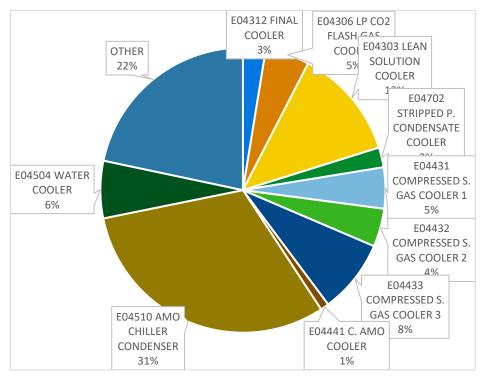



Figure 5.15. Fresh cooling water mapping for AMO section

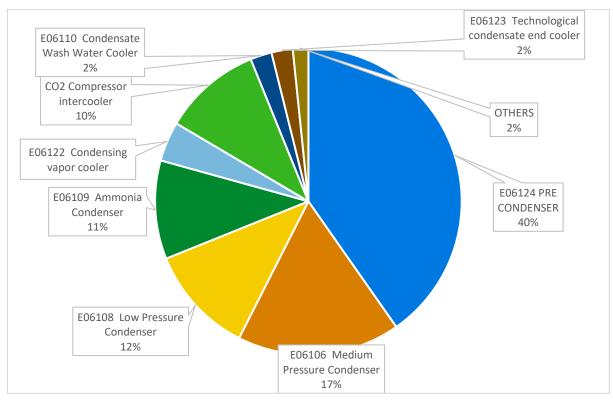



Figure 5.16. Fresh cooling water mapping for URE section

The amonia chilller condensor E04510 accounts for most of the cooling water demand of the AMO section. The condensor can be replaced with an Evaporative Condenser. This will improve the amonia chiller performance and significantly reduce the fresh cooling water demand.

As mentioned, there are opportunities for heat recovery from cooling system up to 28% of the total fresh water cooling load:

- E04510 AMO Chiller Condenser: Capacity: 28,650 kW; Operating Temperature: 102.4°C
- E04433 Compressed S. Gas Cooler 3: Capacity: 7,719 kW; Operating Temperature: 157.6°C
- E04221-E04224 C. Air Cooler: Operating Temperature: 124.8°C
- E06119 CO2 compressor first intercooler: Capacity 3,217 kW, temperature in 170.2 °C
- E06120 CO2 compressor second intercooler: Capacity 3,669 kW, temperature in 220.8 °C
- E06121 CO2 compressor third intercooler: Capacity 2,722 kW, temperature in 177 °C.

# 6 Financial - technical obligations

### 6.1 Basic financial constraints

- Prices and basic costs are as of 2023.
- Prices and costs are based on the exchange rate between Vietnam Dong and USD: 1 USD = 25,642 VND (Average interbank exchange rate 03/2024).

## 6.2 Energy and standards

- Fuel costs and usage are collected from energy bills and documents.
- The CO2 emission factor of Vietnam's power grid is 0.7221 tons of CO2/MWh (according to Official Dispatch No. 1278/BĐKH-TTBVTOD of the Ministry of Natural Resources and Environment - Department of Climate Change issued on December 31, 2022).

Table 6.1. Major energy constraints and standards

|     | Food American                 |             |            | Calorific               | CO2 emiss    | sion factor      |
|-----|-------------------------------|-------------|------------|-------------------------|--------------|------------------|
| No  | Fuel type and standard        | Unit        | TOE/unit   | value/unit<br>(MJ/unit) | Kg<br>CO2/MJ | tons of CO2/unit |
| 1   | Electricity                   | 1000 kWh    | 0.1543     | -                       | -            | 0.8041           |
| 2   | Coke                          | ton         | 0.7 – 0.75 | 29,309 –<br>31,402.5    | 0.0946       | 2.77 – 2.97      |
| 3   | Coal dust type 1,2            | ton         | 0.7        | 29,309                  | 0.0983       | 2.88             |
| 4   | Coal dust type 3,4            | ton         | 0.6        | 25,122                  | 0.0983       | 2.47             |
| 5   | Coal dust type 5,6            | ton         | 0.5        | 20,935                  | 0.0983       | 2.06             |
| 6   | DO (DO Oil)                   | ton         | 1.02       | 42,707.40               | 0.0741       | 3,165            |
| 0   |                               | 1000 liters | 0.88       | 36,845.60               |              | 2.73             |
| 7   | FO (FO Oil)                   | ton         | 0.99       | 41,451.30               | 0.0774       | 3,208            |
| l ' |                               | 1000 liters | 0.94       | 39,357.80               |              | 3,046            |
| 8   | CNG                           | ton         | 1.09       | 45,638.30               | 0.0631       | 2.88             |
| 9   | Natural Gas (NG)              | 1000 m3     | 0.9        | 37,683.00               | 0.0561       | 2,114            |
| 10  | Gasoline for cars and         | ton         | 1.05       | 43,963.50               | 0.0693       | 3,047            |
| 10  | motorbikes                    | 1000 liters | 0.83       | 34,752.10               | -            | 2,408            |
| 11  | Jet fuel                      | ton         | 1.05       | 43,963.50               | 0.0715       | 3,143            |
| 12  | Rice husk/Other solid biomass | ton         | -          | 16,100                  | 0.1          | -                |

- TOE coefficients are referenced by Official Dispatch No. 3505/BCT-KHCN, April 19, 2011.
- The energy conversion factor is calculated based on the conversion value of 1TOE = 41.868 MJ
- Calorific value coefficient (MJ/unit), CO2 emission system for energy types are for reference only.

### 6.3 How to convert energy used to TOE units

Energy of fuels (direct conversion according to formula):

 $TOE = L \times M \times 41,868$ 

In there:

- L Specific heat energy (GJ/ton)
- M Mass (tons)
- Conversion factor: 41.868 (GJ/TOE)

Electricity:

 $1kWh = 1.543 \times 10-4 TOE$ 

## 6.4 Evaluate energy saving measures

Basically the following values are determined to evaluate energy saving measures:

- Energy savings in thermal or electrical units (kJ or kWh)
- Energy savings by unit of mass, volume (ton, liter, m³)
- Annual energy cost savings (VND/year)
- Capital costs to implement energy saving measures (VND, million VND)
- Payback period (months, years)

The formula for calculating payback period is as follows:

Payback period = (Initial investment cost [thousand VND])/(annual cost savings [thousand VND/year]); (years).

# 7 Energy saving solutions

## 7.1 Level B projects (screening list)

During the energy audit, a wide range of observations regarding potential energy savings were noted. Given the volume of these observations, it was not feasible to perform a detailed analysis on each one. Instead, all observations have been initially categorized as level B projects. Following in-depth discussions with facility staff, the most promising opportunities were identified and selected for further development into level A projects.

Level A projects represent the subset of initiatives that have been sufficiently refined and prioritized to justify the next step—a decision on whether to conduct a comprehensive pre-feasibility study. These projects have undergone a preliminary evaluation to assess their technical and economic viability, ensuring that only the most impactful and feasible opportunities advance to more detailed analysis.

A full presentation of the level A projects, including their expected benefits and implementation considerations, is provided in Section 7.2.

Table 7.1. Level B projects (screening list)

| Solutions                         | Detail                                                                                                                                                         |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rehabilitation of cooling systems | There are opportunities to apply cooling tower water directly for process cooling in some areas in stead of using fresh water cooling (5°C higher temperature) |  |
|                                   | <ul> <li>This will make cooling more efficient due to lower feed<br/>temperature of cooling tower water</li> </ul>                                             |  |
|                                   | - This will also increase the capacity on E21201H-T (eventually reducing delta-T)  Promissing locations are:                                                   |  |
|                                   | <ul> <li>Syn Gas compressor intercooler E04431, E04432, E04433<br/>(16,629 kW).</li> </ul>                                                                     |  |
|                                   | <ul> <li>Air compressor intercooler E04221, E04222, E04223,<br/>E04224 (9,738 kW)</li> </ul>                                                                   |  |
|                                   | - CO2 compressor intercooler E06119, E06120, E06121 (11,040 kW)                                                                                                |  |
| Optimization of Plate Heat        | A delta-T of 5 degrees for E21201H-T is relatively high compared to                                                                                            |  |
| exchangers E21201H-T              | other water-to-water plate heat ex-changers of similar size. The                                                                                               |  |
|                                   | current construction of the heat exchanger E21201H-T leaves a place                                                                                            |  |
|                                   | for extra plates to increase size minimizing delta-T.                                                                                                          |  |
|                                   | Fresh cooling water temperature can ben reduced by about 1.1 oC                                                                                                |  |
|                                   | after increasing E21201H-T size by 50%.                                                                                                                        |  |
|                                   | It has been observed that large manual valves are installed in multiple                                                                                        |  |
| capacity of large fans and pumps  | locations within the utility systems to regulate flow capacity.                                                                                                |  |
|                                   | Specifically, the following dampers are partially closed: B07602 and B07603 (70%), B07605 (60%), and B07601 (50%). The plant has                               |  |
|                                   | Rehabilitation of cooling systems  Optimization of Plate Heat                                                                                                  |  |

|    | T                                  | already planned to install a Variable Speed Drive (VSD) for B07602     |  |  |
|----|------------------------------------|------------------------------------------------------------------------|--|--|
|    |                                    | to reduce energy consumption. It is recommended that VSDs also be      |  |  |
|    |                                    |                                                                        |  |  |
|    |                                    | considered for B07602, B07603 and B07605 to enhance energy efficiency. |  |  |
| 4  | Delta-T-hunting and improved       | E04503 (~195 GJ/h) has high delta-T that can be improved to recover    |  |  |
|    | heat recovery                      | heat and reduce cooling load at E04504.                                |  |  |
| 5  | Increased power production with    | After a comprehensive mapping of the heat exchangers and cooling       |  |  |
|    | ORC                                | system, the following waste heat sources have been identified as       |  |  |
|    |                                    | candidates for power production using an Organic Rankine Cycle         |  |  |
|    |                                    | (ORC) or for chilled water production using an absorption chiller:     |  |  |
|    |                                    |                                                                        |  |  |
|    |                                    | - E04510 AMO Chiller Condenser: Capacity: 28,650                       |  |  |
|    |                                    | kW; Operating Temperature: 102.4°C                                     |  |  |
|    |                                    | - E04433 Compressed S. Gas Cooler 3: Capacity:                         |  |  |
|    |                                    | 7,719 kW; Operating Temperature: 157.6°C                               |  |  |
|    |                                    | - E04221-E04224 C. Air Cooler: Operating                               |  |  |
|    |                                    | Temperature: 124.8°C                                                   |  |  |
|    |                                    | <ul> <li>E06119 CO2 compressor first intercooler: Capacity</li> </ul>  |  |  |
|    |                                    | 3,217 kW, temperature in 170.2 °C                                      |  |  |
|    |                                    | - E06120 CO2 compressor second intercooler:                            |  |  |
|    |                                    | Capacity 3,669 kW, temperature in 220.8 °C                             |  |  |
|    |                                    |                                                                        |  |  |
|    |                                    | - E06121 CO2 compressor third intercooler: Capacity                    |  |  |
|    |                                    | 2,722 kW, temperature in 177 °C.                                       |  |  |
|    |                                    |                                                                        |  |  |
| 6  | Rehabilitation of boiler feedwater | Increase E04205 feedwater preheater size to recover more heat from     |  |  |
|    | preheating system                  | pre-reformer furnace exhaust gas (160°C).                              |  |  |
| 7  | Rehabilitation of condensers in    | Replacing the water-cooled condenser E04510 with an Evaporative        |  |  |
|    | ammonia chiller system to          | Condenser. The condensing temperature can be reduced from              |  |  |
|    | improve COP                        | 40.6oC to 33oC (temperature difference of 6.4oC), which can            |  |  |
|    |                                    | potentially increase the cooling capacity by 6.4%.                     |  |  |
| 8  | Optimization of compressed air     | Including 1 or 2 compressors with VSD-drive to avoid frequent in-      |  |  |
|    | systems operation                  | efficient load/un-load-operations                                      |  |  |
| 9  | Assessment of potentials for use   | There is potential to use biomass for the auxiliary boiler as a        |  |  |
|    | of biomass, CO2-capture and        | replacement for natural gas (NG). However, this option could impact    |  |  |
|    | green hydrogen                     | plant operations and require further research. Therefore, it is not a  |  |  |
|    |                                    | priority at this time.                                                 |  |  |
| 10 | Waste heat recovery from AMO       | Excess heat from AMO section (E04433 Compressed S. Gas Cooler          |  |  |
|    | for drying NPK products            | 3: Capacity: 7,719 kW; Operating Temperature: 157.6°C; E04221-         |  |  |
|    |                                    | E04224 C. Air Cooler: Operating Temperature: 124.8°C) can be           |  |  |
|    |                                    | transferred via high-pressure hot water to the NPK workshop, where     |  |  |
|    |                                    | there is a relatively high demand for heat to dry products at          |  |  |
|    |                                    | approximately 100°C. To implement this, additional heat exchangers     |  |  |
|    |                                    | and pipelines will be required to transport the waste heat to the      |  |  |
|    |                                    | consumption site.                                                      |  |  |
|    | 1                                  |                                                                        |  |  |

| 11 | Waste heat recovery from CO2 | Utilize wates heat from CO2 compressor intercooler (E06119,      |  |  |
|----|------------------------------|------------------------------------------------------------------|--|--|
|    | compressor intercooler       | E06120, E06121) for the Vacuum Evaporator (E06114) to reduce the |  |  |
|    |                              | low-pressure steam consumption.                                  |  |  |

## 7.2 Level A projects

## 7.2.1 Optimization of Plate Heat exchangers E21201H-T

| Project information                                                                                            |                   |          |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------|----------|--|--|--|
| Project:                                                                                                       | Project no.       | Date:    |  |  |  |
| Enterprise:                                                                                                    | Auditing company: | Auditor: |  |  |  |
| Project description                                                                                            |                   |          |  |  |  |
| Current situation                                                                                              |                   |          |  |  |  |
| The fresh cooling water is cooled down by river water through 10 river water-fresh water heat plate exchangers |                   |          |  |  |  |
| F21201A~.I with total duty of 214 225 kW                                                                       |                   |          |  |  |  |

Current working status:

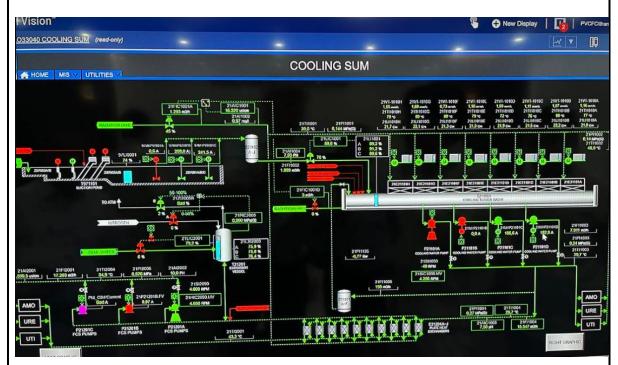



Figure 7.1. Current working status of water cooling system

Table 7.2. Current working status of river – fresh water plate heat exchangers

| Flow configuration            | Counter flow           |        |  |
|-------------------------------|------------------------|--------|--|
| Medium                        | Hot: Water Cold: Water |        |  |
| Flow (m3/h)                   | 17,203                 | 15,547 |  |
| T In (oC)                     | 43.3                   | 29.7   |  |
| T out (oC)                    | 34.9                   | 39     |  |
| Delta T (K)                   | 8.5                    | 9.3    |  |
| Heat flow rate Q (kW)         | 167,064                |        |  |
| Pinch point Delta T-pinch (K) | 4.3                    |        |  |

| Heat Transfer effective kA (kW/K) | 35,360 |
|-----------------------------------|--------|
| Efficiency                        | 0.68   |

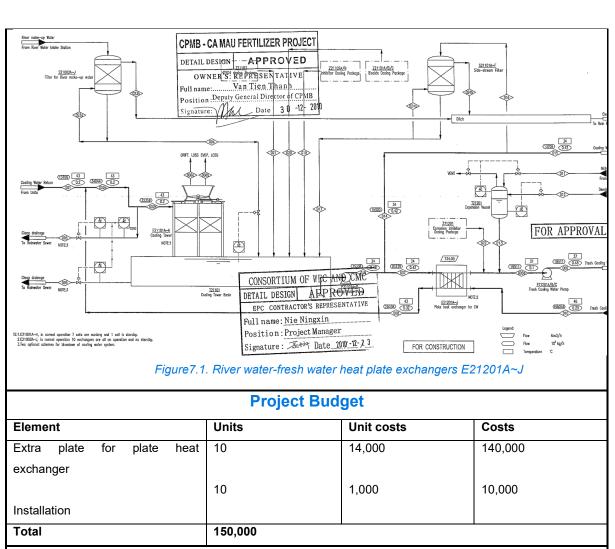
A delta-T pinch of 4.3 degrees is relatively high compared to other water-to-water plate heat exchangers of similar size, where the best practice design can be as low as 1 degree. However, it is mainly because the current flow both primary and secondary has been reduced by cutting of 01 pumps on each side. The current construction of the heat exchanger system leaves a place for extra plates to minimize delta-T, see photo below.



Figure 7.2. River – Fresh water plate heat exchangers

## **Proposed project**

Increase size of PHEs by 50%.


Table 7.3. Working status of river – fresh water plate heat exchangers after size increases

| Flow configuration                | Counter flow |             |  |  |
|-----------------------------------|--------------|-------------|--|--|
| Medium                            | Hot: Water   | Cold: Water |  |  |
| Flow (m3/h)                       | 17,203       | 15,547      |  |  |
| T In (oC)                         | 43.3         | 29.7        |  |  |
| T out (oC)                        | 33.8         | 40.17       |  |  |
| Delta T (K)                       | 9.5          | 10.47       |  |  |
| Heat flow rate Q (kW)             | 188,023      |             |  |  |
| Pinch point Delta T-pinch (K)     | 3.133        |             |  |  |
| Heat Transfer effective kA (kW/K) | 52,332       |             |  |  |
| Efficiency                        | 0.77         |             |  |  |

Fresh cooling water temperature reduces by about 1.1 oC after increasing PHEs size by 50%.

- Reduced ~0.33% energy consumption for compressors (4 stage synth. Gas 16,629 kW, 5 stage air compressors 9,738 kW, and CO2 compressor 11,040 kW) ~ 125 kW
- Reduced ~3% energy consumption for the ammonia chiller 6,176 kW ~ 185 kW

## **Project illustration (PFD)**



| TI |     |   |    |     |   |   |      |   |
|----|-----|---|----|-----|---|---|------|---|
|    | ΝЛ  | _ | C. | ויי | _ | _ |      | _ |
|    | IVI | _ |    | اما |   |   | <br> | _ |
|    |     |   |    |     |   |   |      |   |

| Activity                   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------------------------|---|---|---|---|---|---|---|---|---|----|----|----|
| Pre-feasibility            |   |   |   |   |   |   |   |   |   |    |    |    |
| Feasibility studies        |   |   |   |   |   |   |   |   |   |    |    |    |
| Final Investment Decisions |   |   |   |   | Х |   |   |   |   |    |    |    |

## Saving

| Energy(annual): 9,811 GJ | Financial (annual): 98,112 USD |
|--------------------------|--------------------------------|
| Co2 (annual): 550 tons   | Simple Payback (years): 1.5    |

## **Risk Analysis**

| Risk                | Likelihood     | Impact | Mitigation Measures                                                                                               |
|---------------------|----------------|--------|-------------------------------------------------------------------------------------------------------------------|
| Installation delays | Medium         | Medium | Develop a detailed timeline and contingency plan. Ensure contractor availability and supply chain readiness.      |
| Cost overrun        | Low-<br>Medium | High   | Include a buffer in the budget (~10–15%). Use fixed-price contracts with suppliers and contractors.               |
| Underperformance o  | f<br>Low       | High   | Conduct detailed performance modeling and use high-quality materials. Perform rigorous testing post-installation. |

| Operational disruption Medi              | um Medium             | Schedule installation during low-demand periods or planned maintenance shutdowns.              |
|------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|
| Unexpected technical Medi issues         | Medium-<br>um<br>High | Perform pre-installation system audits. Include expertise from experienced vendors/engineers.  |
| Inaccurate energy savings Low estimation | Medium                | Use validated models for predictions and monitor performance post-implementation.              |
| Environmental concerns Low               | Low                   | Ensure compliance with local environmental regulations during installation.                    |
| Stakeholder resistance Low               | Medium                | Communicate the project's benefits clearly, including cost savings and sustainability impacts. |

# Non Energy benefits

- Increased production capacity via higher product flows and/or better performance of unit operations
- Support future capacity expansions

### 7.2.2 Replacement of Ammonia Refrigeration Condenser by Evaporative Condenser

| Project information |                   |          |  |  |  |
|---------------------|-------------------|----------|--|--|--|
| Project:            | Project no.       | Date:    |  |  |  |
| Enterprise:         | Auditing company: | Auditor: |  |  |  |

## **Project description**

### **Current situation**

The current refrigeration system uses a water-cooled condenser to condense the refrigerant (NH3). The cooling water circulates in a closed water loop (Clean Water) and is cooled by the cooling tower's circulating water (River Water). Due to indirect heat exchange through 2-loops (figure below)., the condensing temperature of the refrigerant is high (~34.5oC), resulting in increased power consumption of the ammonia compressor.

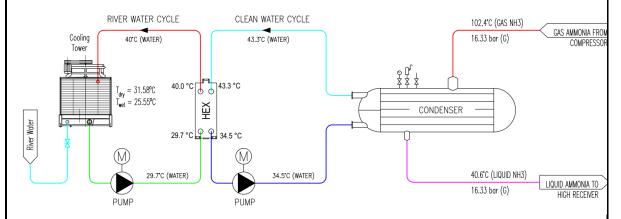
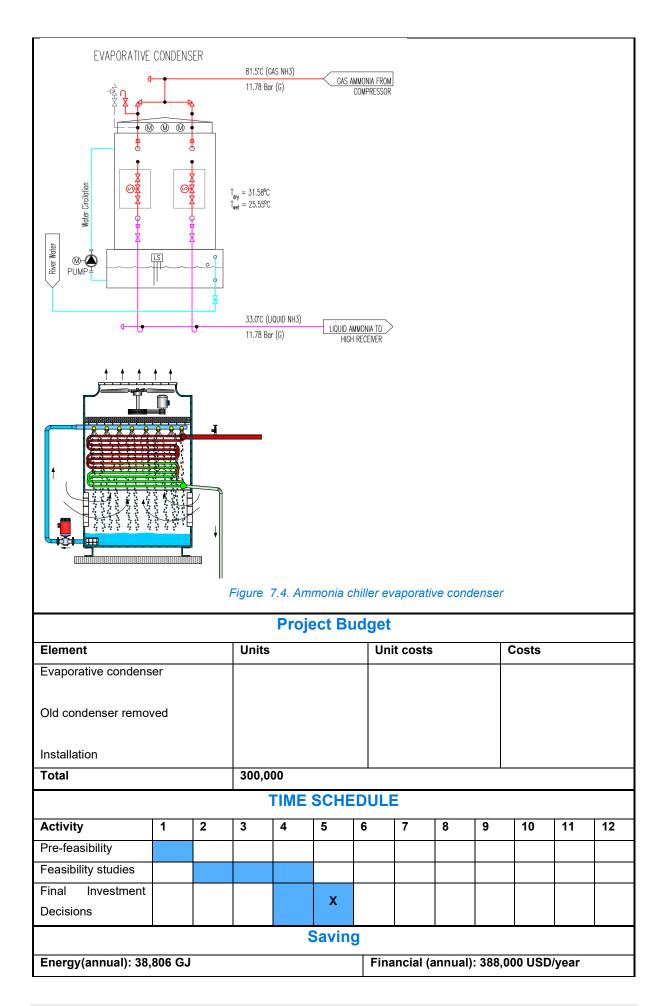




Figure 7.3. Current situation of the ammonia chiller condenser

### **Proposed project**

In the ammonia refrigeration, if condensing temperature increase 1°C means approx.: 1% lower cooling capacity, 3% lower COP, and 3.1% higher power consumption. Therefore, to improve the energy efficiency of the refrigeration system, the condensing temperature of the refrigerant needs to be reduced. This can be achieved by replacing the water-cooled condenser with an Evaporative Condenser. The condensing temperature can be reduced from 40.6oC to 33oC (temperature difference of 6.4oC), which can potentially increase the cooling capacity by 6.4%, 19.2% higher COP and reduce the 20% power consumption. Reduced ~20% energy consumption for the ammonia chiller 6,176 kW ~ 1,232 kW.

### **Project illustration (PFD)**



| Co2 (annual): 2,134 tons                  |                |        |         | Simple Payback (years): 0.77                                                           |
|-------------------------------------------|----------------|--------|---------|----------------------------------------------------------------------------------------|
|                                           |                | Risk A | Analy   | sis                                                                                    |
| Risk                                      | Likelihood     | Impact | Mitigat | tion Measures                                                                          |
| Installation delays                       | Medium         | Medium |         | p a detailed timeline and contingency plan. nate with experienced contractors.         |
| Cost overrun                              | Low-<br>Medium | High   |         | a 10–15% contingency buffer in the budget. Use rice contracts.                         |
| Operational disruption                    | Medium         | Medium | Schedu  | ıle installation during planned shutdown periods.                                      |
| Underperformance of evaporative condenser | Low            | High   |         | proper design and selection of evaporative user. Perform thorough commissioning tests. |
| Scaling or maintenance issues             | Medium         | Medium |         | sh a regular maintenance plan to manage scaling lling risks.                           |
| Environmental compliance                  | Low            | Low    |         | the system adheres to local environmental and standards.                               |

# Non Energy benefits

- When the refrigeration system does not use clean water for cooling, the clean water circulation flow can be reduced by approx. 2,750 m3/h (~16% of total fresh cooling water flow). The reduced clean water flow will increase the heat exchange efficiency of the HEX and will reduce the temperature of the clean water, before it is supplied to other processes.
- Support future capacity expansions

### 7.2.3 Increase E04503 capacity to reduce energy loss at E04504.

| Project information |                   |          |  |  |  |  |
|---------------------|-------------------|----------|--|--|--|--|
| Project:            | Project no.       | Date:    |  |  |  |  |
| Enterprise:         | Auditing company: | Auditor: |  |  |  |  |

## **Project description**

### **Current situation**

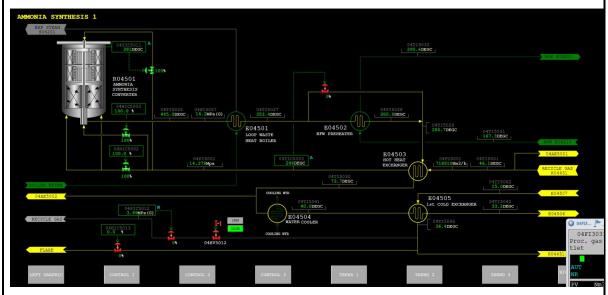
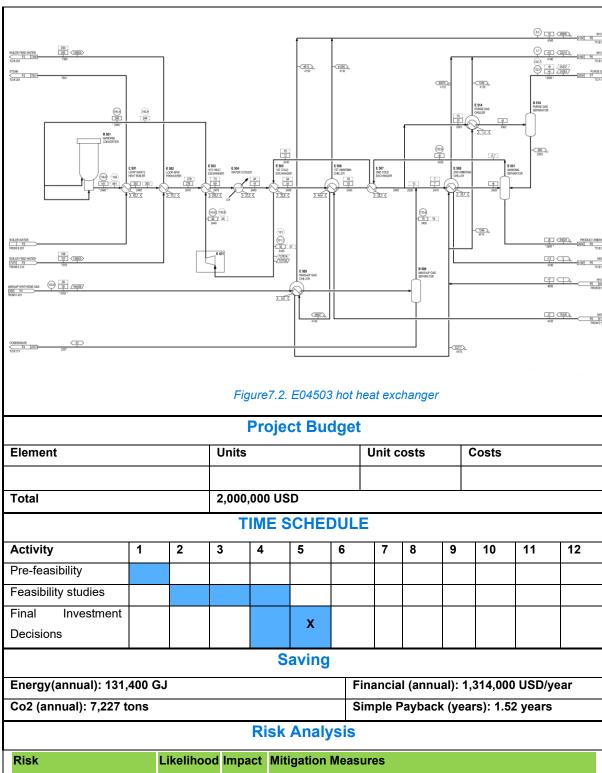



Figure 7.5. E04503 hot heat exchanger


The gas leaving the synthesis tower R04501 is cooled step by step, before being discharged in the waste heat boiler E04501 from a temperature of about 441oC to 340oC. Next, the gas is cooled to about 280-290oC in the boiler feed water heater E04502 and in the hot heat exchanger E04503, where the synthesis gas is cooled to 65oC by heating the synthesis tower inlet gas. The synthesis gas is then cooled to 41oC in the water chiller E04504 and further down, to 34-35oC in the heat exchanger E04505, which is used to heat the synthesis inlet gas.

E04503 (~195 GJ/h) has high delta-T that can be improved to recover heat and reduce cooling load at E04504.

### **Proposed project**

Increase E04503 capacity by 12% to 234 GJ/h to recover heat and reduce cooling load at E04504. Heat recovery by heating inlet gas from 46.10C to  $\sim 270$  OC.

# **Project illustration (PFD)**



| Risk                       | Likelihood | Impact | Mitigation Measures                                                                      |
|----------------------------|------------|--------|------------------------------------------------------------------------------------------|
| Design or sizing errors in | Low        | Lliab  | Use advanced modeling and experienced engineering                                        |
| E04503                     | Low        | High   | consultants. Perform detailed design reviews.                                            |
| Cost overrun               | Medium     | Medium | Include a contingency budget of ~10–15%. Negotiate fixed-price contracts with suppliers. |
| Installation disruptions   | Medium     | Medium | Schedule work during planned maintenance shutdowns to avoid unplanned downtime.          |

|        | Underperformance          | of        | ∐iah     | Conduct thorough performance testing during commissioning.                            |
|--------|---------------------------|-----------|----------|---------------------------------------------------------------------------------------|
| E04503 |                           | Low       | High     | Choose a proven, high-quality design.                                                 |
|        | Scaling and fouling issue | es Medium | n Medium | Regularly monitor and maintain the heat exchanger to prevent performance degradation. |

# Non Energy benefits

- Reduce cooling load at E04504 by reducing input temperature to ~ 50 OC thus reducing fresh cooling water flow.
- Support future capacity expansions

### 7.2.4 Direct use of cooling tower water for intercooler of compressors

| Project information |                   |          |  |  |  |  |
|---------------------|-------------------|----------|--|--|--|--|
| Project:            | Project no.       | Date:    |  |  |  |  |
| Enterprise:         | Auditing company: | Auditor: |  |  |  |  |

## **Project description**

### **Current situation**

Freshwater is directly used in condensers and heat exchangers, except for turbine condensers in the plant, to reduce the temperature of process streams. It is then cooled down by Riverwater through Riverwater-freshwater heat exchangers E21201A~J. The temperature of fresh cooling water is higher than the temperature of river cooling water by 5oC.

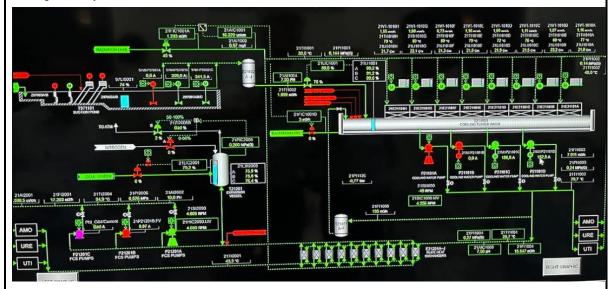



Figure 7.3 Water cooling system

### **Proposed project**

There are opportunities to apply cooling tower water directly for process cooling in some areas in stead of using fresh water cooling,

- This will make cooling more efficient due to lower feed temperature of cooling tower water
- This will also increase the capacity on E21201H-T (eventually reducing delta-T)

### Promissing locations are:

- Syn Gas compressor intercooler E04431, E04432, E04433 (16,629 kW).
- Air compressor intercooler E04221, E04222, E04223, E04224 (9,738 kW)
- CO2 compressor intercooler E06119, E06120, E06121 (11,040 kW)

By reducing cooling water temperature 5oC, the energy consumption for compressors can reduce  $\sim$  1.65%.

## **Project illustration (PFD)**

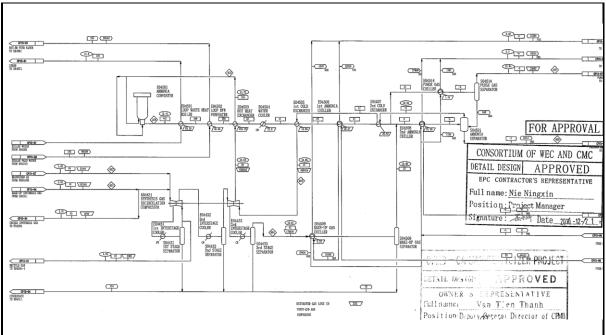



Figure 7.6. Intercooler of synthesis gas compressors

# **Project Budget**

| Element                        | Units       | Unit costs  | Costs   |
|--------------------------------|-------------|-------------|---------|
| Liement                        | Office      | Offit Costs | OUSIS   |
| Piping and Valves              | Lot         | 150,000     | 150,000 |
| Instrumentation & Control      |             | 50,000      | 50,000  |
| Water Treatment System Upgrade |             | 100,000     | 100,000 |
| Engineering & Design           |             | 50,000      | 50,000  |
| Installation & Commissioning   |             | 100,000     | 100,000 |
| Contingency                    |             | 50,000      | 50,000  |
| Total                          | 500,000 USD | I           | 1       |

## **TIME SCHEDULE**

| Activity                   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------------------------|---|---|---|---|---|---|---|---|---|----|----|----|
| Pre-feasibility            |   |   |   |   |   |   |   |   |   |    |    |    |
| Feasibility studies        |   |   |   |   |   |   |   |   |   |    |    |    |
| Final Investment Decisions |   |   |   |   | Х |   |   |   |   |    |    |    |

# Saving

| Energy(annual): 49,055 GJ | Financial (annual): 490,560 USD/year |
|---------------------------|--------------------------------------|
| Co2 (annual): 2,750 tons  | Simple Payback (years): 1.02 year    |

# **Risk Analysis**

| Risk Description                                                              | Likelihood | Impact | Mitigation Strategy                                                                                                                                              |
|-------------------------------------------------------------------------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inadequate Cooling Tower Water Treatment leading to corrosion/scaling/fouling | 2-Medium   | 3-High | Implement a robust water treatment program with appropriate corrosion inhibitors, biocides, and regular monitoring. Conduct regular inspections of intercoolers. |
| Incompatibility of materials with cooling tower water                         | 1-Low      | 3-High | Thorough material compatibility assessment during the design phase. Confirm material specifications with vendors.                                                |

| Unexpected impact on cooling tower performance       | 2-Medium | 2-<br>Medium | Detailed hydraulic calculations and modeling during the design phase. Monitor cooling tower performance after implementation.      |
|------------------------------------------------------|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| Insufficient cooling capacity from the cooling tower | 1-Low    | 3-High       | Verify cooling tower capacity against required cooling load during the design phase.                                               |
| Increased maintenance requirements for intercoolers  | 2-Medium | 2-<br>Medium | Implement a preventive maintenance program for the intercoolers. Monitor intercooler performance and schedule regular inspections. |
| Unplanned shutdowns due to cooling system issues     | 1-Low    | 3-High       | Implement redundancy in the cooling system where feasible. Develop emergency procedures for cooling system failures.               |

# Non Energy benefits

- Reduced Freshwater Consumption. By switching to cooling tower water, the project directly reduces
  the demand for freshwater resources. This is particularly important in regions with water scarcity or
  where freshwater treatment is energy-intensive. This aligns with sustainability goals and can improve
  the plant's environmental footprint.
- Increased Heat Exchanger Capacity/Efficiency. As highlighted in the project description, using colder cooling tower water can increase the capacity and efficiency of existing heat exchangers (E21201H-T).
- Increased Production Capacity/Revenue. If applicable, quantify the potential increase in production output or product quality resulting from improved cooling.